medigraphic.com
ENGLISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 4

<< Anterior Siguiente >>

Arch Neurocien 2020; 25 (4)


Resonancia Magnética en Esclerosis Múltiple: un repaso de los principios básicos de imagenología y guías prácticas de uso

Romo-Sanchez M, Nelson F, Sangrador-Deitos M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 74
Paginas: 23-31
Archivo PDF: 294.11 Kb.


PALABRAS CLAVE

Consorcio de centros de esclerosis múltiple, imágenes de resonancia magnética en la red de esclerosis múltiple, imágenes de resonancia magnética, esclerosis múltiple, ponderado en t1, ponderado en t2.

RESUMEN

La imagenología por resonancia magnética (IRM), representa una ventana in vivo de la fisiopatología de la esclerosis múltiple (EM) y nos ha llevado a considerarla como una herramienta clave para el diagnóstico, manejo y toma de decisiones al iniciar o cambiar fármacos modificadores de la enfermedad (FARME). Resulta esencial estar familiarizado con las técnicas de imagen y los protocolos recomendados que pueden mejorar la detección de la actividad para poder proveer del mejor manejo posible1-2. Muchas veces existe un desacoplamiento entre clínicos y radiólogos en cuanto a los requisitos solicitados al ordenar un estudio de imagen, lo cual se puede traducir en un subóptimo manejo. Esto puede suceder por mala comunicación, desconocimiento de técnicas imagenológicas por parte de los clínicos o, por otra parte, porque los radiólogos muchas veces no son conscientes de la importancia que pueden tener las características específicas de IRM en el proceso de toma de decisiones del neurólogo tratante. De ahí la importancia de los protocolos estandarizados de resonancia magnética para que los médicos y radiólogos se familiaricen con ellos, a fin de mejorar la calidad de la imagen, la detección de lesiones y el informe radiológico. Esta revisión resume los principios básicos de la IRM en EM y compara las recomendaciones relevantes del Consorcio de Centros de EM (CMSC) y el consenso europeo de imagenología por resonancia magnética (MAGNIMS); presentando la información de una manera simple y profesional, fácil de seguir por expertos y no expertos en el campo.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Klawiter EC. Current and new directions in MRI in multiple sclerosis. CONTINUUM Minneap Minn. 2013; 19(4 Multiple Sclerosis):1058-73. DOI: 10.1212/01.CON.0000433283.00221.37

  2. Arevalo O, Riascos R, Rabiei P, Kamali A, Nelson F. Standardizing magnetic resonance imaging protocols, requisitions and reports in Multiple Sclerosis: an update for radiologist based on 2017 magnetic resonance imaging in Multiple Sclerosis and 2018 consortium of Multiple Sclerosis centers consensus guidelines comput. J Comput Assist Tomogr. 2019; 43(1):1-12. DOI: 10.1097/RCT.0000000000000767.

  3. Matthews PM, Roncaroli F, Waldaman A, Sormani MP, De Stefano N, Giovannoni G, et al. A practical review of the neuropathology and neuroimaging of multiple sclerosis. Pract Neurol. 2016; 16(4):279-87. DOI: 10.1136/practneurol-2016-001381

  4. Stys PK, Zamponi GW, Van Minnen J, Geurts JJG. Will the real multiple sclerosis please stand up?.Nat Rev Neurosci. 2012; 20,13(7):507-14. DOI: 10.1038/nrn3275.

  5. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol. 2002; 15(3):239-45. DOI: 10.1097/00019052- 200206000-00003

  6. De Paula Faria D, Copray S, Buchpiguel C, Dierckx R, De Vries E. PET imaging in multiple sclerosis. J. Neuroimmune Pharmacol. 2014;9(4):468-82. DOI: 10.1007/s11481-014-9544-2

  7. Traboulsee A, Simon JH, Stone L, Fisher E, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am. J. Neuroradiol. 2016;37(3):394-401. DOI: 10.3174/ajnr.A4539

  8. Wattjes MP, Rovira A, Miller D, Yousry TA, Sormani MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis – establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015; 11(10):597-606. DOI:10.1038/nrneurol.2015.157.

  9. Lublin FD, Reingold SC, Cohen JA, Cutter GR, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014; 15, 83(3):278-86. DOI: 10.1212/WNL.0000000000000560

  10. Filippi M, Rocca MA, Ciccarelli O, De Stefano N, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016; 15(3):292-303. DOI: 10.1016/S1474-4422(15)00393-2

  11. Hackmack K, Weygandt M, Wuerfel J, et al. Can we overcome the ‘clinico-radiological paradox’ in multiple sclerosis?. J Neurol. 2012; 259(10):2151-60. DOI: 10.1007/s00415-012-6475-9

  12. Daumer M, Neuhaus A, Morrissey S, Hintzen R, Ebers GC, Daumer A. MRI as an outcome in multiple sclerosis clinical trials. Neurology. 2009; 24, 72(8):705-11. DOI: 10.1212/01.wnl.0000336916.38629.43

  13. Sahraian MA, Radue EW, Haller S, Kappos L. Black holes in multiple sclerosis: Definition, evolution, and clinical correlations. Acta Neurologica Scandinavica. 2010;122(1):1-8. DOI:10.1111/j.1600-0404.2009.01221.x

  14. Sormani M. P., Bonzano L., Roccatagliata L., Cutter G. R., Mancardi G. L., Bruzzi P. Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a metaanalytic approach. Ann. Neurol. 2009; 65(3): 268-275. DOI:10.1002/ana.21606

  15. Mollison D, Sellar R, Bastin M, et al. The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: A systematic review and meta-analysis. PLoS One. 2017;12(5):e0177727. DOI:10.1371/journal.pone.0177727

  16. Wattjes MP, Steenwijk MD, Stangel M. MRI in the Diagnosis and Monitoring of Multiple Sclerosis: An Update. Clin. Neuroradiol. 2015; 25:157-165. DOI:10.1007/s00062-015-0430-y

  17. Wattjes MP, Harzheim M, Lutterbey GG, Hojati F, Simon B, Schmidt S, et al. Does high field MRI allow an earlier diagnosis of multiple sclerosis? J Neurol. 2008; 255(8).1159-1163. DOI:10.1007/s00415-008-0861-3

  18. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011; 69(2):292-302. DOI:10.1002/ana.22366

  19. Gaillard F. Radiopaedia.org. The wiki-based collaborative Radiology resource. Radiopaedia.org. 2014.

  20. David PC. Magnetic Resonance Imaging (MRI) of the Brain and Spine: Basics. 2006. Available: https://case.edu/med/neurology/NR/MRI Basics. htm.

  21. Rovira A, Auger C, Alonso J. Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord. September 2013;6(5):298-310. DOI:10.1177/1756285613484079

  22. van Waesberghe JHTM, van Walderveen M, Castelijns JA, Scheltens P, Nijeholt GL, Barkhof F, et al. Patterns of lesion development in multiple sclerosis: Longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am J Neuroradiol. May 1998;19(4):675-683.

  23. Unknown. Magnetic Resonance Imaging. Available: https://www.nationalmssociety. org/Symptoms-Diagnosis/MRI.

  24. Haller S, Kövari E, Herrmann FR, Cuvinciuc V, Tomm AM, Zulian GB, et al. Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathol Commun. 2013;1:14. DOI:10.1186/2051-5960-1-14.

  25. van Munster CEP, Uitdehaag BMJ. Outcome Measures in Clinical Trials for Multiple Sclerosis. CNS Drugs. 2017;31:217-236. DOI:10.1007/ s40263-017-0412-5

  26. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008; 131(3):808-817. DOI:10.1093/ brain/awm329

  27. Tintore M, Rovira A, Río J, Otero-Romero S, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(7):1863-1874. DOI:10.1093/brain/awv105

  28. Haacke EM, Xu Y, Cheng YCN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004; 52(3):612-608. DOI:10.1002/ mrm.20198.

  29. Kau T, Taschwer M, Deutschmann H, Schönfelder M, Weber J R, Hausegger KA. The ‘central vein sign’: Is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur Radiol. 21 2013; 23(7):1956- 1962. DOI:10.1007/s00330-013-2791-4

  30. Nelson F, Datta S, Garcia N, et al. Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler. 2011; 17(9):1122-1129. DOI:10.1177/1352458511405561

  31. Wattjes MP, Lutterbey GG, Gieseke J, et al. Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol. 2007; 28(1):54-9.

  32. Lavery AM, Verhey LH, Waldman AT. Outcome measures in relapsing-remitting multiple sclerosis: capturing disability and disease progression in clinical trials. Mult Scler Int. 2014; 2014:262350. DOI:10.1155/2014/262350

  33. Wolinsky JS, Narayana PA, Nelson F, Datta S, O'Connor P, Confavreux C, et al. Teriflunomide Multiple Sclerosis Oral (TEMSO) Trial Group. Magnetic resonance imaging outcomes from a phase III trial of teriflunomide. Mult Scler. 2013; 19(10):1310-1319. DOI:10.1177/1352458513475723.

  34. Dekker I, Wattjes MP. Brain and Spinal Cord MR Imaging Features in Multiple Sclerosis and Variants. Neuroimaging Clinics of North America. 2017;27(2):205-227. DOI:10.1016/j.nic.2016.12.002

  35. Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG, et al. NAIMS Cooperative. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol. 2016; 12(12):714-722. DOI:10.1038/nrneurol.2016.166

  36. Bagnato F, Hametner S, Yao B, van Gelderen P, et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain. 2011;134(12):3602–3615. DOI:10.1093/brain/awr278

  37. van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 1998 May;50(5):1282-1288. DOI:10.1212/wnl.50.5.1282

  38. Truyen L, van Waesberghe JH, van Walderveen MA, van Oosten BW, Polman CH, Hommes OR, et al. Accumulation of hypointense lesions (black holes) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996; 47(6):1469-1476. DOI: 10.1212/ wnl.47.6.1469

  39. van Walderveen MAA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin STFM, et al. Correlating MRI and clinical disease activity in multiple sclerosis. Neurology.1995; 45(9):1684-1690. DOI:10.1212/WNL.45.9.1684

  40. He J, Grossman RI, Ge Y, Mannon LJ. Enhancing patterns in multiple sclerosis: evolution and persistence. AJNR Am J Neuroradiol. 2001; 22(4):664- 669.

  41. Tommasin S, Giannì C, De Giglio L, Pantano P. Neuroimaging Techniques to Assess Inflammation in Multiple Sclerosis. Neuroscience. 2019, 1; 403:4-16. DOI:10.1016/j.neuroscience.2017.07.055

  42. Davis M, Auh S, Riva M, Richert ND, Frank JA, McFarland H F, et al. Ring and nodular multiple sclerosis lesions: A retrospective natural history study. Neurology. 2010; 74(10):851-856. DOI:10.1212/WNL.0b013e3181d- 31df5

  43. Geurts JJ, Calabrese M, Fisher E, Rudick RA. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 2012; 11(12):1082- 1092. DOI:10.1016/S1474-4422(12)70230-2

  44. Simon B, Schmidt S, Lukas C, Gieseke J, Träber F, Knol DL, et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol. 2010 ;20(7):1675-1683. DOI:10.1007/s00330-009-1705-y

  45. Geurts JJ, Bö L, Pouwels PJ, Casteljins JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR. American Journal of Neuroradiology. 2005; 26(3):572- 577.

  46. Geurts JJ, Roosendaal SD, Calabrese M, Ciccarelli O, Agosta F, Chard DT, et al. MAGNIMS Study Group. Consensus recommendations for MS cortical lesion scoring using double inversion recovery MRI. Neurology. 2011; 1, 76(5):418-424. DOI:10.1212/WNL.0b013e31820a0cc4

  47. Bø L, Vedeler CA, Nyland HI, Trapp BD, Mørk SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003; 62(7):723-732. DOI:10.1093/jnen/62.7.723

  48. Geurts JJG, Pouwels PJW, Uitdehaag BMJ, Polman CH, Barkhof F, Castelijns JA. Intracortical Lesions in Multiple Sclerosis: Improved Detection with 3D Double Inversion-Recovery MR Imaging. Radiology. 2007;236(1).

  49. Nelson F, Poonawalla AH, Hou P, Huang F, Wolinsky JS, Narayana PA. Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging. AJNR Am J Neuroradiol. 2007; 28(9):1645-1649 . DOI:10.3174/ajnr.A0645

  50. Bonek R, Sokólska E, Kurkiewicz T, Maciejek Z. Demyelinating lesions in cervical spinal cord and disability in multiple sclerosis patients. Neurologia i Neurochirurgia Polska. 2004; 38(1):25-29.

  51. Lycklama à Nijeholt GJ, Uitdehaag BM, Bergers E, Castelijns JA, Polman CH, Barkhof F. Spinal cord magnetic resonance imaging in suspected multiple sclerosis Eur Radiol. 2000; 10(2):368-376. DOI:10.1007/ s003300050058

  52. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis-- diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015; 11(6):327-338. DOI:10.1038/nrneurol.2015.80

  53. Sombekke MH, Wattjes MP, Balk LJ, Nielsen JM, Vrenken H, Uitdehaag BM, et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology. 2013 1; 80(1):69- 75. DOI:10.1212/WNL.0b013e31827b1a67

  54. Bermel RA, You X, Foulds P, Hyde R, Simon JH, Fisher E, et al. Predictors of long-term outcome in multiple sclerosis patients treated with interferon . Ann Neurol. 2013; 73(1):95-103. DOI:10.1002/ana.23758

  55. Absinta M, Sati P, Gaitán MI, Maggi P, Cortese IC, Filippi M, et al. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann Neurol. 2013; 74(5):669-678. DOI:10.1002/ ana.23959

  56. Campion T, Smith R, Altmann DR, Brito GC, Turner BP, Evanson J, et al. FLAIR* to visualize veins in white matter lesions: A new tool for the diagnosis of multiple sclerosis? Eur Radiol. 2017;27(10):4257–4263. DOI: 10.1007/s00330-017-4822-z

  57. Maggi P, Absinta M, Grammatico M, Vuolo L, Emmi G, Carlucci G, et al. Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol. 2018; 83(2):283-294. DOI:10.1002/ana.25146

  58. Ghione E, Bergsland N, Dwyer MG, Hagemeier J, Jakimovski D, Paunkoski I, et al. Aging and Brain Atrophy in Multiple Sclerosis. J Neuroimaging. 2019; 29(4):527-535. DOI:10.1111/jon.12625

  59. Storelli L, Rocca MA, Pagani E, Van Hecke W, et al. Measurement of Whole-Brain and Gray Matter Atrophy in Multiple Sclerosis: Assessment with MR Imaging. Radiology. 2018; 288(2):554-564. DOI:10.1148/ radiol.2018172468

  60. Rudick RA, Lee JC, Nakamura K, Fisher E. Gray matter atrophy correlates with MS disability progression measured with MSFC but not EDSS. J Neurol Sci. 2009;282(1-2):106–111. DOI:10.1016/j.jns.2008.11.018

  61. Furby J, Hayton T, Altmann D, et al. A longitudinal study of MRI-detected atrophy in secondary progressive multiple sclerosis. J Neurol. 2010; 257(9):1508-1516. DOI:10.1007/s00415-010-5563-y

  62. Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008; 64(3):255-265. DOI:10.1002/ana.21436

  63. Luzzio DF. Multiple Sclerosis Guidelines. 2019. Online. Available: https:// emedicine.medscape.com/article/1146199-guidelines.

  64. Gawne-Cain ML, Webb S, Tofts P, Miller DH. Lesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging. 1996; 6(5):705-713. DOI:10.1002/jmri.1880060502

  65. Gallagher HL, MacManus DG, Webb SL, Miller DH. A reproducible repositioning method for serial magnetic resonance imaging studies of the brain in treatment trials for multiple sclerosis. J Magn Reson Imaging. 1997; 7(2):439-441. DOI:10.1002/jmri.1880070232

  66. Wilms G, Marchal G, Kersschot E, Vanhoenacker P, Demaerel P, Bosmans H, et al. Axial vs sagittal T2-weighted brain MR images in the evaluation of multiple sclerosis. J Comput Assist Tomogr. 1991; 15(3):359-364. DOI:10.1097/00004728-199105000-00003

  67. Wattjes MP, Barkhof F. High field MRI in the diagnosis of multiple sclerosis: high field–high yield? Neuroradiology. 2009; 5:279–292. DOI:10.1007/ s00234-009-0512-0

  68. Mistry N, Tallantyre EC, Dixon JE, Galazis N, et al. Focal multiple sclerosis lesions abound in 'normal appearing white matter'. Multiple Sclerosis (Houndmills, Basingstoke, England). 2011; 17(11):1313-1323. DOI:10.1177/1352458511415305

  69. Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrology Dialysis Transplantation.2006; 21(4):1104-1108. DOI:10.1093/ndt/ gfk062

  70. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006; 17(9):2359-62. DOI:10.1681/ASN.2006060601

  71. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007; 243(1):148-57. DOI:10.1148/radiol.2431062144

  72. Kanda T, Nakai Y, Oba H, Toyoda K, Kitajima K, Furui S. Gadolinium deposition in the brain. Magn Reson Imaging. 2016; 34(10):1346-1350. DOI:10.1016/j.mri.2016.08.024

  73. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D. Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology. 2016; 58(5):433-41. DOI:10.1007/s00234-016-1658-1

  74. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiol. 2014; 270(3):834-41. DOI:10.1148/ radiol.1313166




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2020;25

ARTíCULOS SIMILARES

CARGANDO ...