Revista Latinoamericana de Microbiología

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor


>Revistas >Revista Latinoamericana de Microbiología >Año 2004, No. 1-2

Folch-Mallol JL, Garay-Arroyo A, Lledías F, Covarrubias RAA
La respuesta a estrés en la levadura Saccharomyces cerevisiae
Microbiología 2004; 46 (1-2)

Idioma: Español
Referencias bibliográficas: 147
Paginas: 24-46
Archivo PDF: 216.06 Kb.

Texto completo


Todos los organismos vivos necesitan adaptarse a condiciones cambiantes del medio ambiente para sobrevivir. Tanto en la naturaleza, en el laboratorio, como en procesos industriales, S. cerevisiae atraviesa por diferentes situaciones adversas para su crecimiento, siendo las más importantes condiciones de estrés térmico, osmótico y oxidativo. En esta levadura se ha identificado una vía de respuesta general a estrés que está mediada por la proteína cinasa A; sin embargo, también se han identificado vías específicas de respuesta a cada una de las condiciones estresantes. Así, la vía de HOG regula la respuesta a estrés osmótico, el factor de transcripción HSF induce genes en respuesta a estrés térmico y los factores Yap1p y Yap2p regulan la respuesta a estrés oxidativo, entre otros mecanismos tanto enzimáticos como no enzimáticos. Aquí describimos los aspectos que consideramos más relevantes referentes a las vías de percepción y transducción de señales que regulan los genes que constituyen los mecanismos de respuesta a los tipos de estrés más comunes para Saccharomyces cerevisiae. También incluimos información que refleja la gran interacción que existe entre las vías de transducción implicadas en las diferentes respuestas que le permite a este organismo coordinar sus procesos fisiológicos para lograr una adaptación óptima.

Palabras clave: Respuesta a estrés, transducción de señales.


  1. Akhtar, N., A.K. Pahlman., K Larsson., A.H., Corbett & L. Adler. 2000. SGD1 encodes an essential nuclear protein of Saccharomyces cerevisiae that affects expression of the GPD1 gene for glycerol 3-phosphate dehydrogenase. FEBS Lett. 483(2-3):87-92.

  2. Albertyn, J., Hohmann, S., Thevelein, J.M. & B.A. Prior. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135-44.

  3. Alepuz, P. M., Cunningham, K.W. & F. Estruch. 1997. Glucose repression affects ion homeostasis in yeast through the regulation of stress-activated ENA1 gene. Mol. Microbiol. 26:91-98.

  4. Alepuz, P., Jovanovic, A., Reiser, V., & G. Ammerer. 2001. Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol Cell. 7(4):767-77.

  5. Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M., & L. Adler. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16(9):2179-87.

  6. Balasundaram, D., Tabor, CW. & H. Tabor. 1991. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Proc. Natl Acad. Sci 88:5872–5876.

  7. Beck T, & M.N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402(6762):689-92.

  8. Blomberg, A., & L. Adler. 1989. Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol. 171(2):1087-92.

  9. Blomberg, A. 2000. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 182(1):1-8.

  10. Boutelet F, P. A., & F. Hilger. 1985. Yeast cdc35 mutants are defective in adenylate cyclase and are allelic with cyr1 mutants while CAS1, a new gene, is involved in the regulation of adenylate cyclase. EMBO J. 4(10):2635-41.

  11. Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., & M. Jacquet. 1998. Msn2p and Msn4p control a large number of genes induced at the diuxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol. 180:1044-1052.

  12. Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., & Gustin, M.C. 1993. An osmosensing signal transduction pathway in yeast. Science 259(5102):1760-3.

  13. Camus, C., Geymonat, M., Garreau, H., Baudet-Nessler, S. & M. Jacquet. 1997. Dimerization of Cdc25p, the guanine-nucleotide exchange factor for Ras from Saccharomyces cerevisiae, and its interaction with Sdc25p. Eur. J. Biochem 247:703-708.

  14. Causton, H., Ren, B., Koh, S.S., Harbison, CT., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., & R.A. Young. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 12(2):323-37.

  15. Chen, T., & C.S. Parker. 2002. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces heat shock factor. PNAS 99(3):1200-1205.

  16. Clos J, W. J., Becker P.B, Wilson S, Lambert K, & C., Wu. 1990. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63(5):1085-97.

  17. Colledge, M., & J.D. Scott. 1999. AKAPs: from structure to function. Trends Cell Biol. 9:216-221.

  18. Collinson, L.P. &. I.W. Dawes. 1995. Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Genes Dev. 156:123-127.

  19. Colombo, S., Ma, P., Cauwenberg, L., Winderickx, J., Crauwels, M., Teunissen, A., Nauwelaers, D., de Winde, J.H., Gorwa, M.-F., Colavizza, D., & J.M Thevelein. 1998. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17:3326-3341.

  20. Craig, E. A., Baxter, B.K., Becker, J., Halladay, J. & T. Zigelhoffer. 1994. Is Hsp70 the cellular thermometer? Trends Biochem. Sci. 16:135-140.

  21. Crespo, J. L., Powers, T., Fowler, B., & M.N. Hall. 2002. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. USA 99(10):6784-6789.

  22. Damak, F., Boy-Marcotte E., Le-Roscouet, D., Guilbaud, R. & M. Jacquet. 1991. SDC25, a CDC25-like gene which contains a RAS activating domain and is a dispensable gene of Saccharomyces cerevisiae. Mol. Cell Biol 11:202-212.

  23. Davidson, J. F., Whyte, B., Bissinger, P.H. & R.H. Schiestl. 1996. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5116-5121.

  24. Delaunay, A., Isnard, A.D., & M.B. Toledano. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19(19):5157-66.

  25. Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., & M B. Toledano. 2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111(4):471-81.

  26. DeLuna, A., Avendaño, A., Riego, L, & A. Gonzalez. 2001. NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem. 276(47):43775-83.

  27. Dichtl, B., Stevens, A., & D. Tollervey. 1997. Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J. 16(23):7184-95.

  28. Dihazi H, Kessler, R., & K. Eschrich. 2003. Glucose-induced stimulation of the Ras-cAMP pathway in yeast leads to multiple phosphorylations and activation of 6-phosphofructo-2-kinase. Biochemistry 42(20):6275-82.

  29. Estruch, F. 2000. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 24:469-486.

  30. Fedor-Chaiken, M., Deschenes, R.J. & J.R. Broach. 1990. SVR2, a gene required for RAS activation of adenylate cyclase. Cell 61:329-340.

  31. Fernandes, L., Rodrigues-Pousada, C. & K. Struhl. 1997. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol. Cell Biol. 17:6982–6993.

  32. Flattery-O’Brien, J., Grant, CM. & I.W. Dawes. 1997. Stationary-phase regulation of the Saccharomyces cerevisiae SOD2 gene is dependent on the additive effects of HAP2/3//4/5- and STRE binding elements. Mol. Microbiol. 23:303-312.

  33. Furst, P., Hu, S., Hackett, R. & D. Hamer. 1988. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705-717.

  34. Garay-Arroyo, A., Lledias, F., Hansberg, W., & A.A. Covarrubias. 2003. Cu,Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis. FEBS Lett. 539(1-3):68-72.

  35. Garciadeblas, B., Rubio, F., Quintero. F.J., Bañuelos, M.A., Haro, R., & A. Rodríguez-Navarro. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet 236:363-368.

  36. Garreau, H., Hasan, R.N., Renault, G., Estruch, F., Boy-Marcotte, E., & M. Jacquet. 2000. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:2113-20.

  37. Garrido, E., & C.M. Grant. 2002. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol. 43(4):993-1003.

  38. Gasch, A., Spellman, PT., Kao, CM., Carmel-Harel, O., Eisen, MB., Storz, G., Botstein, D., & P.O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 11(12):4241-4257.

  39. Gaxiola, R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L., & G.R. Fink. 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A. 96(4):1480-5.

  40. Geymonat, M., Wang, L., Garreau, H. & M. Jacquet. 1998. Ssa1p chaperone interacts with the guanine exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30:855-864.

  41. Görner, W., Durchschlag, E., Martinez-Pastor, M.T., Estruch, F., Ammerer, G., Hamilton, B., Ruis, H. & C. Schüller. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586-597.

  42. Gralla, E. & J.S. Vallentine. 1991. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates. J. Bacteriol. 173:5918-5920.

  43. Grey, M. & M. Brendel. 1994. Overexpression of the SNQ3/YAP1 gene confers hyperresistance to nitrosoguanidine in Saccharomyces cerevisiae via a glutathione-independent mechanism. Curr. Genet. 25:469-471.

  44. Griffioen, G., Anghileri, P., Imre E., Baroni, M.D. & H. Ruis. 2000. Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J. Biol. Chem. 275:1449-1456.

  45. Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., & R. Ruis. 2001. Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol. Cell Biol. 21:511-523.

  46. Griffioen, G., & J.M. Thevelein. 2002. Molecular mechanisms controlling the localization of protein kinase A. Curr Genet. 41(4):199-207.

  47. Gross, E., Goldberg, D. & A. Levitzki. 1992. Phosphorylation of the Saccharomyces cerevisiae Cdc25p in response to glucose results in its dissociation from Ras. Nature 360:762-765.

  48. Halliwell, B. & M.C. Gutteridge. 1999. Free Radicals in Biology and Medicine. London, Oxford University Press.

  49. Hamer, D. 1986. Metallothionein. Ann. Rev. Biochem 55:913–951.

  50. Hardy, J. A., Walsh, S.T. & H.C. Nelson. 2000. Role of an alpha-helical bulge in the yeast heat shock transcription factor. J Mol Biol. 295(3):393-409.

  51. Hinnebusch, A., & K. Natarajan. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 1(1):22-32.

  52. Hohmann, S. &. W. Mager. 1997. Shaping up: The responses of yeast to osmotic stress. Yeast stress responses. S. Hohmann and W. Mager. U.S.A., Chapman & Hall:101-146.

  53. Hohmann, S. 2003. The osmotic stress response of Saccharomyces cerevisiae. Yeast stress responses. S. Hohmann and W. Mager. Germany, Springer:121-200.

  54. Holst, B., Lunde, C., Lages, F., Oliveira, R., Lucas, C., & M.C. Kielland-Brandt. 2000. GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae. Mol Microbiol. 37(1):108-24.

  55. Hon, T., Hach, A., Lee, H. C., Cheng, T., & L. Zhang. 2000. Functional analysis of heme regulatory elements of the transcriptional activator Hap1. Biochem Biophys Res Commun. 273(2):584-91.

  56. Iida, H. &. I. Yahara. 1984. A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J. Cell. Biol. 99:1441-1450.

  57. Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., & A. Kimura. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 274(38):27002-9.

  58. Inouye S, K. K., Izu H, Fujimoto M, Sugahara K, Yamada S, Shinkai Y, Oka Y, Katoh Y, & A. Nakai. 2003. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol. Cel. Biol. 23(16):5882-95.

  59. Jacobsen, B. &. H.R. Pelham. 1988. Constitutive binding of yeast heat shock factor to DNA in vivo. Mol. Cell. Biol. 8:5040-5042.

  60. Jamieson, D., Rivers, SL. & D.W.S. Stephen. 1994. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology. 140:3277-3283.

  61. Juhnke, J., Krems, B., Kotter, P. & K.D. Entian. 1996. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol. Gen. Genet 252:456-464.

  62. Jungmann, J., Reins, H.A., Lee, J., Romeo, A.R., Kosman, D. & S. Jentsch. 1993. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors and is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12:5051-5056.

  63. Kim, S., Huh, Wk., Kim, J.Y., Huang, S.W. & S.O. Kang. 1996. D-arabinose dehydrogenase and biosynthesis of erythroascorbic acid in Candida albicans. Biochim. Biophys. Acta 1297:1-8.

  64. Kingston R. E, Schuetz. T., & Z. Larin. 1987. Heat-inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol. 7(4):1530-4.

  65. Kobayashi, N. & K McEntee. 1990. Evidence for heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87:6550-6554.

  66. Kobayashi, N. & K McEntee. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:248-256.

  67. Kraakman, L., Lemarie, K., Ma, P., Teunissen, A.W.R.H., Donaton, M.C.V., VanDijck, P. Winderickx, J., de Winde, J.H., & J.M. Thevelein,. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol 32:1002-1012.

  68. Kurtz, S., Rossi, J., Petko, L., & S. Lindquist. 1986. An ancient developmental induction: heat shock proteins induced in sporulation and oogenesis. Science 231:1154-1157.

  69. Larcher, W. 1995. Physiological Plant Ecology. Berlin, Springer-Verlag.

  70. Larsson, K., Ansell, R., Eriksson, P., & L. Adler. 1993. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10(5):1101-11.

  71. Li, S., Ault, A., Malone, C.L., Raitt, D., Dean, S., Johnston, L.H., Deschenes, R.J., & J.S. Fassler. 1998. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 17(23):6952-62.

  72. Li, S., Dean, S., Li, Z., Horecka, J., Deschenes, R.J., & J.S. Fassler. 2002. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell. 13(2):412-24.

  73. Lindquist, S. 1992. Heat shock proteins and stress tolerance in microorganisms. Curr. Opin. Genet. Dev. 2:748-755.

  74. Liu, X. D. & D.J. Thielle. 1996. Oxidative stress induced heat shock factor phosphorilation and HSF-dependent activation of yeast metallothioprotein gene transcription. Genes Dev. 10:592-603.

  75. Luikenhuis, S., Perrone, G., Dawes, I.W. & C.M. Grant. 1998. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell 9:1081-1091.

  76. Luyten, K., Albertyn, J., Skibbe, WF., Prior, BA., Ramos, J., Thevelein, JM., & S. Hohmann. 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14(7):1360-71.

  77. Ma, P., Wera, S., Van Dick, P. & J.M. Thevelein. 1999. The PDE1 encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signalling. Mol. Biol. Cell. 10:91-104.

  78. Maeda, T., Wurgler-Murphy, SM., & H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369(6477):242-5.

  79. Maeda, T., Takekawa, M., & H. Saito. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269(5223):554-8.

  80. Mager W.H., & A.J. De Kruijff. 1995. Stress-induced transcriptional activation. Microbiol Rev 59(3):506-31.

  81. Marchler, G., Schuller, C., Adam, G., & H. Ruis. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12(5):1997-2003.

  82. Martínez-Pastor, M.T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H. & F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15:2227-2235.

  83. Márquez, J. A., Pascual-Ahuir, A., Proft, M., & R. Serrano. 1998. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J. 17(9):2543-2553.

  84. Moskvina, E. Schüller, C., Maurer, C.T., Mager, W.H. & H. Ruis. 1998. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041-1050.

  85. Moye-Rowley WS. 2002. Transcription factors regulating the response to oxidative stress in yeast. Antioxid Redox Signal. 4(1):123-40.

  86. Muller, E. 1991. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J. Biol. Chem. 266:9194-9202.

  87. Murguia, J.R., Belles, J.M,, & R. Serrano. 1996. The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J Biol Chem. 271(46):29029-33.

  88. Pahlman, A., Granath, K., Ansell, R., Hohmann, S., & L. Adler. 2001. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem. 276(5):3555-63.

  89. Park, S.K., Cha, M.K., Jeong, W., & I.H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae J. Biol. Chem. 275(8):5723-5732.

  90. Pascual-Ahuir, A., Posas, F., Serrano, R., & M. Proft. 2001a. Multiple levels of control regulate the yeast cAMP-response element-binding protein repressor Sko1p in response to stress. J Biol Chem. 276(40):37373-8.

  91. Pascual-Ahuir, A., Serrano, R., & M. Proft. 2001b. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol. 21(1):16-25.

  92. Pawson, T., & J.D. Scott. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science. 278(5346):2075-80.

  93. Peteranderl, R. &. H.C. Nelsson. 1992. Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil. Biochemistry 31(48):12272-6.

  94. Piper, P. 1997. The Heat Shock response. Heldelberg, Springer-Verlag.

  95. Portela, P., Howell, S., Moreno, S., & S. Rossi. 2002. In vivo and in vitro Phosphorylation of Two Isoforms of Yeast Pyruvate Kinase by Protein Kinase A. Journal of Biological Chemistry 277(34):30477-30487.

  96. Posas, F., Camps, M., & J. Arino. 1995. The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells. J. Biol Chem. 270(22):13036-41.

  97. Prior, C., Potier, S., Souciet, J.L., & H. Sychrova. 1996. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 387(1):89-93.

  98. Proft, M., & R. Serrano. 1999. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol. 19(1):537-46.

  99. Proft, M., Pascual-Ahuir, A., de Nadal, E., Arino, J., Serrano, R., & F. Posas. 2001. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J. 20(5):1123-33.

  100. Proft, M. & Struhl, K. 2002. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell. 9(6):1307-17.

  101. Raitt, D., Posas, F., & H. Saito. 2000. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 19(17):4623-31.

  102. Reinders, A., Bürckert, N., Boller, T., Wiemken, A., & C. De Virgilio. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 12:2943-2955.

  103. Reiser, V., Salah, S.M., Ammerer, G. 2000. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol. 2(9):620-7.

  104. Rep, M., Reiser,V., Gartner, U., Thevelein, J.M., Hohmann, S., Ammerer, G. & H. Ruis. 1999. Osmotic Stress-Induced Gene Expression in Saccharomyces cerevisiae Requires Msn1p and the Novel Nuclear Factor Hot1p. Mol Cell Biol 19(8):5474-5485.

  105. Rep, M., Krantz, M., Thevelein, J.M., & S. Hohmann. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 275(12):8290-300.

  106. Rohde, J., Heitman, J., & M.E. Cardenas. 2001. The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276(13):9583-6.

  107. Ruis, H. & B. Hamilton. 1992. Regulation of yeast catalase genes. In Molecular Biology of Free Radical Scavenging Systems, CSH Press:153-172.

  108. Ruis, H. & C. Schüller. 1995. Stress signaling in yeast. Bioessays 17:959-966.

  109. Sánchez, Y. & S. Lindquist. 1990. HSP104 is required for induced thermotolerance. Science 248:1112-1115.

  110. Santoro, N., Johansson, N. and & D.J. Thiele. 1998. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor. Mol. Cell. Biol. 18:6340-6352.

  111. Schnell, N., Krems, B. & K.D. Entian. 1992. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-Jun homologue, is involved in oxygen metabolism. Curr. Genet. 21:269-273.

  112. Serrano, R. 1996. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int. Rev. of Cyt. 165:1-52.

  113. Shi, Y., Mosser, D.D. & R.I. Morimoto. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12(5):654-66.

  114. Singer M.A. & S. Lindquist. 1998. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 16(11):460-8.

  115. Slekar, K., Kosman, D.J. & V.C. Culotta. 1996. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271:28831-28836.

  116. Smith, B. J. &. M.P. Yafee. 1991. Uncoupling thermotolerance from the induction of heat shock proteins. Proc Natl Acad Sci U S A 88(24):11091-4.

  117. Smith, R., & A.D. Johnson. 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25(7):325-30.

  118. Sorger P., K. &. H.C. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59(5):807-13.

  119. Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62(4):793-805.

  120. Sorger, P.K. 1991. Heat shock factor and heat shock response. Cell 65:363-366

  121. Storz, G., Christman, M.F., Sies, H. & B.N. Ames. 1987. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl Acad. Sci 84:8917-8921.

  122. Sutherland, F., Lages, F., Lucas, C., Luyten, K., Albertyn, J., Hohmann, S., Prior, B.A., & S.G. Kilian. 1997. Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. J Bacteriol. 179(24):7790-5.

  123. Tamas, M., Rep, M., Thevelein, J.M., & S. Hohmann. 2000. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472(1):159-65.

  124. Tanaka, K., Matsumoto K. & A. Toh-e. 1989. Ira1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol. Cel. Biol. 9:757-768.

  125. Tao, W., Deschenes, R.J., & J.S. Fassler. 1999. Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem. 274(1):360-367.

  126. Tatchell, K. 1993. RAS genes in the budding yeast Saccharomyces cerevisiae. San Diego, Academic Press.

  127. Thevelein, J. M. 1994. Signal transduction in yeast. Yeast 10:109-130.

  128. Thevelein, J. M., & de J.H. Winde. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Molecular Microbiology 33(5): 904-918.

  129. Thevelein, J. M., Cauwenberg, L., Colombo, S., De Winde, J. H., Donation, M., Dumortier, F., Kraakman, L., Lemaire, K., Ma, P., Nauwelaers, D., Rolland, F., Teunissen, A., Van Dijck, P., Versele, M., Wera, S. & J. Winderickx. 2000. Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance and growth in yeast. Enzyme and Microbial Technology 26:819-825.

  130. Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McBullen, B., Hurwitz, M., Krebs, E.G. & M. Wigler. 1987a. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell Biol. 7:1371-1377.

  131. Toda, T., Cameron, S., Sass, P., Zoller, M. & P. Wigler. 1987b. Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277-287.

  132. Tortora J. G., F., R.B., & L.C. Case. 1986. Microbiology. Menlo Prak, CA, USA, Benjamin/Cummings Publishing Company Inc.

  133. Treger, J. M., Schmitt, A.P., Simon, J.R. & K. McEntee. 1998a. Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in Saccharomyces cerevisiae. J. Biol. Chem. 273:26875-26879.

  134. Treger, J. M., Magee, T.R., & K. McEntee. 1998b. Functional analysis of the stress response element and its role on the multistress response of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 243:13-19.

  135. Vilela, C., Linz, B., Rodrigues-Pousada, C., & J.E. McCarthy. 1998 The yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability. Nucleic Acids Res. 26(5):1150-9.

  136. Vuister, G., Kim, S.J., Orosz, A., Marquardt, J., Wu, C., & A. Bax. 1994. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol. 1(9):605-14.

  137. Wadskog, I. & L. Adler. 2003. Ion homeostasis in Saccharomyces cerevisiae under NaCl stress. En Yeast Stress Responses. Ed. Hohmann, S. and Mager W.H. 201-440 pp.

  138. Weiser, R., Adam, G., Wagner, A., Schüller, C., Marchler, G., Ruis, H., Krewiec, Z. & T Bilinski. 1991. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J. Biol Chem 266: 12406-12411.

  139. Werner-Washburne, M. B., J., Kosic-Smithers, J. & E.A. Craig. 1989. Yeast HSP70 RNA levels vary in response to the physiological status of the cell. Journal of Bacteriology 171:2680-2688.

  140. Werner-Washburne M., B. E., Johnston G.C., & R.A, Singer. 1993. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiological Reviews 57:383-401.

  141. Westwood, J. T., Clos, J. & C. Wu. 1991. Stress-induced oligomerization of heat shock factor. Nature 353:822-827.

  142. Wieland, J., Nietsche, A.M., Strayle, J., Steiner, H., & H.K. Rudolph. 1995. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 14:3870-3882.

  143. Wiederrecht G, S. D., & C.S. Parker. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6):841-53.

  144. Wu, A. & W.S. Moye-Rowley. 1994. GSH1, which encodes g-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol. Cell Biol. 14:5832–5839.

  145. Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 11:441-69.

  146. Yancey, P., Clark, M.E., Hand, SC., Bowlus, R.D., & G.N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science. 217(4566):1214-22.

  147. Zhao, X., Raitt, D., Burke, P.V., Clewell, A.S., Kwast, K.E. & R.O. Poyton. 1996. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. J. Biol. Chem 271:25131-25138.

>Revistas >Revista Latinoamericana de Microbiología >Año2004, No. 1-2

· Indice de Publicaciones 
· ligas de Interes 

Derechos Resevados 2019