Entrar/Registro  
INICIO ENGLISH
 
Revista Latinoamericana de Microbiología
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista Latinoamericana de Microbiología >Año 2005, No. 1-2


Figueroa OIM, Verdugo RA
Mecanismos moleculares de patogenicidad de Salmonella sp
Microbiología 2005; 47 (1-2)

Idioma: Español
Referencias bibliográficas: 148
Paginas: 25-42
Archivo PDF: 181.70 Kb.


Texto completo




RESUMEN

Salmonella es un bacilo Gram negativo que se comporta como patógeno intracelular facultativo. Su hábitat es el aparato gastrointestinal de los animales y el hombre, nunca como microbiota normal. Se encuentra asociada a problemas gastrointestinales, septicémicos y aborto gracias a su capacidad de invasión celular y sobrevivencia intrafagocítica. Actualmente se sabe que Salmonella cuenta con cinco islas de patogenicidad. Varios genes involucrados en la invasión, apoptosis de macrófagos y activación de cascadas de fosforilación dependientes de MAP cinasas se encuentran en el centisoma 63, formando la isla de patogenicidad 1 (SPI-1). Los genes localizados en las islas SPI-2 y SPI-3 regulan la supervivencia y replicación bacteriana en los compartimientos intracelulares de fagocitos y células epiteliales. La isla SPI-4 codifica un supuesto sistema de secreción tipo I y se cree que participa en la adaptación en ambientes intracelulares. Finalmente la isla SPI-5 codifica para factores involucrados en la secreción fluida y reacción inflamatoria en la mucosa intestinal. Debido a una regulación coordinada y precisa de los genes de virulencia Salmonella logra adaptarse a cambios ambientales que se le presentan durante el proceso infeccioso.


Palabras clave: Salmonella, enteritis, invasión, islas de patogenicidad, sistema de secreción tipo III, superivencia intrafagocítica.


REFERENCIAS

  1. Aabo S., J.P. Christensen, M.S. Chadfield, B. Carstensen, T.K. Jensen, M. Bisgard & J.E. Olsen. 2000. Development of an in vivo model for study of intestinal invasion by Salmonella enterica in chickens. Infect. Immun. 68:7122-7125.

  2. Ahmer B.M., J. Reeuwijk, P.R. Watson, T.S. Wallis & F. Heffron. 1999. Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol. 31:971-982.

  3. Bajaj V., C. Hwang & C.A. Lee. 1995. hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol. Microbiol. 18:715-727.

  4. Bakshi C.S., V.P. Singh, M.W. Wood, P.W. Jones, T.S. Wallis & E.E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol. 182:2341-2344.

  5. Balcázar Q.J. 1993. Determinación de la existencia de un gen para una enterotoxina LT-like en Salmonella gallinarum. Tesis de Licenciatura. México, DF.: Facultad de Medicina Veterinaria y Zootecnia. UNAM.

  6. Barrow P.A., J.M. Simpson, M.A. Lovell & M.M. Binns. 1987. Contribution of Salmonella gallinarum large plasmid toward virulence in fowl typhoid. Infect. Immun. 55:388-392.

  7. Bäumler A., A. Gilde, R. Tsolis, A. Velden, B. Ahmer & F. Heffron.1997. Contribution of horizontal genes transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J. Bacteriol. 179:317-322.

  8. Beuzón C.R., K.E. Unsworth & D.W. Holden 2001. In vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 69:7254-7261.

  9. Blanc-Potard A.B., F. Solomon, J. Kayser & E.A. Groisman. 1999. The SPI-3 patogenicity of Salmonella enterica. J. Bacteriol. 181:998-1004.

  10. Buchmeier N.A. & F. Heffron. 1989. Intracellular survival of wild-type Salmonella typhimurium and macrophages-sensitive mutants in diverse populations of macrophages. Infect. Immun. 13:1-17.

  11. Brumell J.H., A.J. Perrin, D.L. Goosney & B.B. Finlay. 2002. Microbial pathogenesis News niches for Salmonella. Current Biol. 12:R15-R17.

  12. Chen L.M., S. Hobbie & J.E. Galán. 1996. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science. 274:2115-2118.

  13. Chen L.M., K. Kaniga & J.E. Galán. 1996. Salmonella spp. are cytotoxic for cultured macrophages. Mol. Microbiol. 21:1101-1115.

  14. Clark C.G., L.A. MacDonald, C.C. Ginocchio, J.E. Galán & R.P. Johnson. 1996. S. typhimurium InvA expression probed with a monoclonal antibody to the C-terminal peptide of InvA. FEMS Microbiol. Letters. 136:263-268.

  15. Clark M.A., B.H. Hirst & M.A. Jepson 1998. Inoculum composition and Salmonella pathogenicity island 1 regulate M-cell invasion and epithelial destruction by S. typhimurium. Infect. Immun. 66:724-731.

  16. Clark M.A., K.A. Reed, J. Lodge, J. Stephen, B.H. Hirst & M.A. Jepson. 1996. Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion cultured cells. Infect. Immun. 64:4363-4368.

  17. Clarke R.C. & C.L. Gyles. 1993. Salmonella. In Gyles C.L. and C.O. Thoen editors. Pathogenesis of Bacterial Infections in Animals 2nd ed. Iowa State University Press. AMES: 133-153.

  18. Collazo C.M. & J.E. Galán. 1997. The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol. Microbiol. 24:747-756.

  19. Collazo C.M., M.K. Zierler & J.E. Galán. 1995. Functional analysis of Salmonella typhimurium invasion genes invI and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol. Microbiol. 15:25-38.

  20. Cotter P.A. & V.J. DiRita. 2000. Bacterial virulence gene regulation: an evolutionary perspective. Annu. Rev. Microbiol. 54:519-65.

  21. Deiwick J., T. Nikolaus, J.E. Shea, C. Gleeson, D.W. Holden & M. Hensel. 1998. Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistence to antimicrobial agents. J. Bacteriol. 180:4775-80.

  22. DeVinney R., O. Steele-Mortimer & B.B. Finlay. 2000. Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol. 8:29-33.

  23. Dirección General de Epidemiología, Secretaría de Salud. Sistema único de información para la vigilancia epidemiológica, México D.F.:SSA, 1998:172, 266 y 454.

  24. Drecktrah D., L.A. Knodler & O. Steele-Mortimer. 2004. Modulation and utization of host cell phosphoinositides by Salmonella spp. Infect. Immun. 72:4331-4335.

  25. Eckmann L., M.F. Kagnoff. & J. Fierer. 1993. Epithelial cells secrete the chemokine IL8 in response to bacterial entry. Infect. Immun. 61:4569-4574.

  26. Edwards R.A., S. Dieter & M.R. Stanley. 2000. A role for Salmonella fimbriae in peritoneal infections. Proc. Natl. Acad. Sci. 97:1258-1262.

  27. Edwards R.A. & J. L. Puente. 1998. Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends. Microbiol. 6:282-287.

  28. Eichelberg K. & J. Galán. 1999. Differential regulation of Salmonella typhimurium type III secreted proteins by SPI-1 encoded transcriptional activators InvF and HilA. Infect Immun. 67:4099-4105.

  29. Eichelberg K., C.C. Ginocchio & J.E. Galán. 1994. Molecular and functional characterization of the S. typhimurium invasion genes invB and invC: homology of InvC to the FoF1 ATPase family of proteins. J. Bacteriol. 176:4501-4510.

  30. Elsinghorst E.A., L.S. Baron & D.J. Kopecko. 1989. Penetration of human intestinal epithelial cells by Salmonella molecular cloning and expression of Salmonella typhi invasion determinants in E. coli. Proc. Natl. Acad. Sci. USA. 86:5173-5177.

  31. Ernst R.K., T. Guina & S.I. Miller. 1989. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. JID. 179:S326-30.

  32. Figueroa Bossi N. & L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167-176.

  33. Figueroa O.M. 2003. Caracterización de la capacidad de invasión celular y citotoxicidad en macrófagos de Salmonella gallinarum cepa FVA-1. Tesis de Maestría. Facultad de Medicina Veterinaria y Zootecnia. UNAM, México.

  34. Finlay B.B. & P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science. 276:718-725.

  35. Finlay B.B. & S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136-169.

  36. Finlay B.B., B. Gumbiner & S. Falkow. 1988. Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monoloyer. J. Cell Biol. 107:221-230.

  37. Fu Y. & J.E. Galán. 1998. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cell and disrupts the actin cytoskeleton. Mol. Microbiol. 27:359-368.

  38. Fu Y. & J.E. Galán. 1999. A Salmonella protein antagonizes Rac-1 and CDC42 to mediate host-cell recovery after bacterial invasion. Nature. 401:293-297.

  39. Galán, J.E. 1994. Salmonella entry into mammalian cells: different yet converging signal transduction pathways. Trends. Cell. Biol. 4:196-199.

  40. Galán J.E. 1996. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20:263-271.

  41. Galán J.E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17:53-86.

  42. Galán J.E. & A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science. 284:1322-1328.

  43. Galán J.E. & R. Curtiss III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA. 86:6383-6387.

  44. Galán J.E. & R. Curtiss III. 1991. Distribution of the invA, -B, -C and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 59:2901-2908.

  45. Galán J.E., C.C. Ginocchio & P. Costeas. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol. 174:4338-4349.

  46. Galán J.E. & P.J. Sansonetti. 1996. Molecular and cellular bases of Salmonella and Shigella interactions with host cells. In Neidhardt F.C. et. al. eds. Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press. 2757-2799.

  47. Galyov E.E., M.W. Wood, R. Rosqvist, P.B. Mullan, P.R. Watson, S. Hedges & T.S. Wallis. 1997. A secreted efector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol. Microbiol. 25:903-912.

  48. García del Portillo F. 2001. Salmonella intracellular proliferation where, when and how? Microbes and infection. 3:11305-1311.

  49. García del Portillo F & B.B. Finlay. 1995. Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoprotein bypasses compartments with mannose 6-phosphate receptors. J. Cell. Biol. 129:81-97.

  50. García del Portillo F., M.B. Zwick, K.Y. Leung & B.B. Finlay. 1993. Salmonella induces the formation of filamentous structure containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. USA. 90:10544-10548.

  51. Gewirtz A.T., A.M. Siber, J.L. Madara & B.A. McCormick. 1999. Orchestration of neutrophil movement by intestinal epithelial cells in response to Salmonella typhimurium can be uncoupled from bacterial internalization. Infect. Immun. 67:608-617.

  52. Giannella R.A., O. Washington, P. Gemski. & S.B. Formal. 1973. Invasión of HeLa cells by S. typhimurium: a model for study of invasiveness of Salmonella. J. Infect Dis. 128:69-75.

  53. Ginocchio C.C. & J.E. Galán. 1995. Functional conservation among members of the S. typhimurium InvA family of proteins. Infect. Immun. 63:729-732.

  54. Ginocchio C.C., S.B. Olmsted, C.L. Wells & J.E. Galan. 1994. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell. 76:717-724.

  55. Goosney D.L., D.G. Knoechel & B.B. Finlay. 1999. Enteropathogenic E. coli, Salmonella and Shigella: Master of host cell cytoskeletal exploitation. Emerging Infectious Diseases. 5:216-223.

  56. Gordon R.F. Enfermedades de las aves. El Manual Moderno. México, D.F 1980.

  57. Gorvel J.E. & S. Méresse. 2001. Maturation steps of the Salmonella-containing vacuole. Microbes and infection. 3:1299-1303.

  58. Groisman E.A. & H. Ochman. 1997. How Salmonella became a pathogen. Trends. Microbiol. 5:343-348.

  59. Groisman E.A. & H. Ochman. 2000. The path to Salmonella. Features. 66:21-27.

  60. Guiney D.G. 1997. Perspectives series: Host/pathogen interactions. Regulation of bacterial virulence genes expression by the host environment. J. Clin. Invest. 99:565-568.

  61. Gutiérrez-Cogco L., V.E. Montiel, P.P. Aguilera & A.M. González. 2000. Serotipos de Salmonella identificados en los servicios de salud de México. Salud Pública de México. 42:490-495.

  62. Hacker J. & J.B. Kaper. 2000. Pathogenicity island and the evolution of microbes. Annu. Rev. Microbiol. 54:641-679.

  63. Halsey T.A., A. Vazquez-Torres, D.J. Gravdahl, F.C. Fang & S.J. Libby. 2004. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistence and virulence. Infect Immun. 72:1155-1158.

  64. Hansen-Wester I., B. Stecher & M. Hensel. 2002. Analyses of the evolutionary distribution of Salmonella translocated effectors. Infect. Immun. 70:1619-1622.

  65. Hardt W.D., L.M. Chen, K.E. Schuebel, X.E. Bustelo & J.E. Galán. 1998. S. typhimurium encodes an activator of Rho GTPasas that induces membrane ruffling and nuclear responses in host cells. Cell. 93:815-826.

  66. Hardt W.D., U. Henning & J.E. Galán. 1998. A substrate of the centisoma 63 type III protein secretion system of Salmonella typhimurium is encoded by cryptic bacteriophage. Proc. Natl. Acad. Sci. USA. 95:2574-79.

  67. Hensel M., et. al. 1997. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol. Microbiol. 24:155-167.

  68. Hensel M. et. al. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30:163-174.

  69. Hernández L.D., K. Hueffer, M.R. Wenk & J.E. Galán. 2004. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science. 304:1805-1807.

  70. Hersh D., D.M. Monack, M.R. Smith, N. Ghori, S. Falkow & A. Zychlinsky. 1999. The Salmonella invasion SipB induces macrophages apoptosis by binding to caspasa-1. Proc. Natl. Acad. Sci. USA. 96:2396-2401.

  71. Hobbie S., L.M. Chen, R.J. Davis & J.E. Galán. 1997. Involvement of the mitogen-activated protein kinasa pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal cells J. Immunol. 159:5550-5559.

  72. Hong K.H. & V.L. Miller. 1998. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180:1793-1802.

  73. Humphries A.D., S.M. Townsend, R.A. Kingsley, T.L. Nicholson, R.M. Tsolis & A.J. Bäumler. 2001. Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol. Lett. 201:121-125.

  74. Hultgren S.J., C.H. Jones & S. Normark. Bacterial adhesion and their assembly. In Neidhardt F.C. et. al. eds. Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press 1996:2730-2756.

  75. Jensen V.B., J.T. Harty & B. Jones. 1998. Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes and Shigella flexneri with M cells and murine Peyer’s patches. Infect. Immun. 66:3758-3766.

  76. Jepson M.A. & M.A. Clark. 1998. Studying M cell and their role in infection. Trend. Microbiol. 6:359-365.

  77. Jones B.D. 1996. Salmonelosis: host immune responses and bacterial virulence determinants. Annu. Rev. Immunol. 14:533-561.

  78. Jones B.D. & S. Falkow. 1994. Identification and characterization of a S. typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62:3745-3752.

  79. Jones M.A., M.W. Wood, P.B. Mullan, P.R. Watson, T.S. Wallis & E.E. Galyov. 1998. Secreted effector proteins Salmonella dublin act in concert to induce enteritis. Infect. Immun. 66:5799-5804.

  80. Jung H.C., et. al. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion J. Clin. Invest. 95:55-65.

  81. Kaniga K., J.C. Bossio & J.E.Galán. 1994. The S. typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol. Microbiol. 13:555-68.

  82. Kaniga K., J. Uralil, J.A. Bliska & J.E. Galán. 1996. Secreted protein tyrosine phosphates with modular effectors domains in the bacterial pathogen Salmonella. Mol. Microbiol. 21:633-641.

  83. Kernéis S., A. Bogdanova, J.P. Kraehenbuhl & E. Pringault. 1997. Conversion by Peyer’s Patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 277:949-952.

  84. Klein J.R., T.F. Fahlen & B.D. Jones. 2000. Transcriptional organization and function of invasion genes within Salmonella enterica serovar Typhimurium pathogenicity island 1, including the prgH, prgI, prgJ, prgK, orgA, orgB and orgC genes. Infect. Immun. 68:3368-3376.

  85. Klein J.R. & B.D. Jones. 2001. Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect. Immun. 69:737-743.

  86. Knodler L.A., J. Celli, W.D. Hard, B.A. Vallance, C. Yip & B.B. Finlay. 2002. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 43:1089-1103.

  87. Kubori T. et. al. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 280:602-605.

  88. Kubori T., A. Sukhan, S.I. Aizawa & J.E. Galán. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Microbiol. 97:10225-10230.

  89. Kusters J., G. Mulders-Kremers, C. Doornik & B. Zeijst. 1993. Effects of multiplicity of infection, bacterial protein synthesis, and growth phase on adhesion to and invasion. Infect. Immun. 61:5013-5002.

  90. Lee A.K., C.S. Detweiler & S. Falkow. 2000. Omp regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol. 182:771-781.

  91. Lee C.A. 1997. Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells? Trend. Microbiol. 5:148-155.

  92. Low D., B. Braten & M. Woude. 1996. Fimbriae. In Neidhardt, FC et. al., editores. Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press. 146-157.

  93. Lucas R.L. & C.A. Lee. 2000. Untravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol. Microbiol. 36:1024-33.

  94. Lucas R.L., C.P. Lostroh, C.C. Diruso, M.P. Spector, B.L. Waner & C.A. Lee. 2000. Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182:1872-1882.

  95. Lundberg U., U. Vinatzer, D. Berdnik, A. Gabain & M. Baccarini. 1999. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-1 genes. J Bacteriol. 181:3433-37.

  96. Marcus S.L., J.H. Brumell, C.G. Pfeifer & B.B. Finlay. 2000. Salmonella pathogenicity islands: big virulence in small packages. Microbes and infection. 2:145-156.

  97. McClelland M., K.E. Sanderson, S.W. Clifton, P. Latreille, S. Porwollik, A. Sabo, R. Meyer, T. Bieri, P. Ozersky, M. McLellan, C.R. Harkins, C.H. Wang, C.H. Nguyen, A. Berghoff, G. Elliott, S. Kohlberg, C. Strong, F. Du, J. Carter, C. Kremizki, D. Layman, S. Leonard, H. Sun, L. Fulton, W. Nash, T. Miner, P. Minx, K. Delehaunty, C. Fronick, V. Magrini, M. Nhan, W. Warrer, L. Florea, J. Spieth & R.K. Wilson. 2004. Comparison of genome degradation in Paratyphi A an Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nature Genetics.1-7.

  98. McClelland M., K.E. Sanderson, J. Spieth, S.W. Clifton, P. Latreille, L. Courtney, S. Porwollik, J. Ali, M. Dante, F. Du, S. Hou, D. Layman, S. Leonard, C. Nguyen, K. Scott, A. Holmes, N. Grewal, E. Mulvaney, E. Ryan, H. Sun, L. Florea, W. Miller, T. Stoneking, M. Nhan, R. Waterston & R.K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852-856.

  99. McCormick B.A., C.A. Parkos, S.P. Colgan, D.K. Carnes & J.L. Madara. 1998. Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelial by Salmonella typhimurium. J. Immunol. 160:455-466.

  100. Méresse S., O. Steele-Mortimer, B.B. Finlay & J.P. Gorvel. l999. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18:4394-4403.

  101. Miao E.A., et. al. 1999. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34:850-864.

  102. Mirold S., et. al. 2001. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5 and sopE2. J. Bacteriol. 183: 2348-58.

  103. Monack D.M., D. Hersh, N. Ghori, D. Bouley, A. Zychlinsky & S. Falkow. 2000. Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J. Exp Med. 192:249-258.

  104. Monack D.M., W.W. Navarre & S. Falkow. 2001. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microb. Infec. 3:1201-1212.

  105. Monack D.M., B. Raupach, A. Hromockyj & S. Falkow. 1996. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. USA. 93:9833-9838.

  106. Mukherjee K., S.A. Siddiqi, S. Hashim, M. Raje, S.K. Basu & A. Mukhopadhyay. 2000. Live Salmonella recruits NSF on phagosomal membrane and promotes fusion with early endosome. J. Cell Biol. 148:741-753.

  107. Murray R.A. & C.A. Lee. 2000. Invasion genes are not required for Salmonella enterica serovar Typhimurium to breach the intestinal epithelium: evidence that Salmonella pathogenicity island 1 has alternative functions during infection. Infect. Immun. 68:5050-5055.

  108. Ochman H. & E.A. Groisman. 1996. Distribution of Pathogenicity Island in Salmonella spp. Infect. Immun. 64:5410-5412.

  109. Ochman H., F.C. Soncini, F. Solomon & E.A. Groisman. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl. Acad. Sci. USA. 93:7800-7804.

  110. Ohl M.E. & S.I. Miller. 2001. Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 52:259-74.

  111. Parkhill J., G. Dougan, K.D. James, N.R. Thomson, D. Pickard, J. Wain, C. Churcher, K.L. Mungall, S.D. Bentley, M.T.G. Holden, M. Sebaihia, S. Baker, D. Basham, K. Brooks, T. Chillingworth, P. Connerton, A. Cronin, P. Davis, R.M. Davies, L. Dowd, N. White, J. Farrar, T. Feltwell, N. Hamlin, A. Haque, T.T. Hien, S. Holroyd, K. Jagels, A. Krogh, T.S. Larsen, S. Leather, S. Moule, P. O’Gaora, C. Parry, M. Quail, K. Rutherford, M. Simmonds, J. Skelton, K. Stevens, S. Whitehead & B.G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848-852.

  112. Penheiter K.L., N. Mathur, D. Giles, T. Fahien & B.D. Jones. 1997. Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s patches. Mol. Microbiol. 24:697-709.

  113. Rabsch W., H.L. Andrews, R.A. Kingsley, R. Prager, H. Tschäpe, L.G. Adams & A.J. Bäulmer. 2002. Salmonella enterica serotype typhimurium and its host-adapted variants. Infect. Immun. 70: 2249-2255.

  114. Rakeman J.L., H.R. Bonifield & S.I. Miller. 1999. A HilA-independent pathway to S. typhimurium invasion gene transcription. J. Bacteriol. 181:3096-3104.

  115. Rappl C., J. Deiwick & M. Hensel. 2003. Acid pH is required for the functional assembly of the type III secretion system encoded by salmonella pathogenicity island 2. FEMS Microbiol. Lett. 226:363-372.

  116. Rizo Q.N. 1987. Cómo se integra la avicultura Nacional. Memorias del VII curso sobre el control y erradicación de la Tifoidea Aviar. Monterrey Nuevo León. México. Comisión Permanente para el Control y Erradicación de la Pulorosis y Tifoidea Aviar. México, D F.:2-12.

  117. Ruschkowski S., I. Rosenshine, & B. B. Finlay. 1992. Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells. FEMS Microbiol. Lett. 74:121–126.

  118. Salyers A.A. & D.P. Whitt. 1994. Bacterial Pathogenesis. A molecular Approach. American Society for Microbiology Press. Washington, DC.

  119. Santos R.L., R.M. Tsolis, A.J. Bäumler, R. Smith III & L.G. Adams. 2001. Salmonella enterica serovar Typhimurium induces cell death in bovine monocyte-derived macrophages by early sip-B dependent and delayed sip-B independent mechanisms. Infect. Immun. 69:2293-2301.

  120. Shea J.E., M. Hensel, C. Gleeson & D.W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad.Sci. USA. 93:2593-2597.

  121. Siebers A. & B.B. Finlay. 1996. M cells and the pathogenesis of mucosal and systemic infections. Trend. Microbiol. 4: 22-28.

  122. Sirard J.C., F. Niedergang & J.P. Kraehenbuhl. 1999. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol. Rev. 171:5-26.

  123. Sjobring U., G. Pohl & A. Olsen. 1994. Plasminogen, absorbed by E. coli expressing curli by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol. Microbiol. 14: 443-452.

  124. Soto, G.E. & S.J. Hultgren. 1999. Bacterial Adhesins: Common themes and variations in arquitecture and assembly. J. Bacteriol. 181: 1059-1071.

  125. Steele-Mortimer O., L.A. Knodler, S.L. Marcus, M.P. Scheid, B. Goth, C.G. Pfeifer, V. Duronio & B.B. Finlay. 2000. Activation of Akt/protein kinase B in epithelial cells by Salmonella typhimurium effector sigD. J. Biol. Chem. 275:37718-37724.

  126. Stender S., A. Friebel, S. Linder, M. Rohde, S. Mirold & W.D. Hard. 2000. Identification of SopE2 from S. typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36:1206-21.

  127. Straaten T., et. al. 2001. Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication. Infect. Immun. 69:7413-7418.

  128. Sukhan A. 2000. The invasion-associated type III secretion system of Salmonella typhimurium: common and unique features. CMLS. 57:1033-1049.

  129. Townsend S.M., N.E. Kramer, R. Edwards, S. Baker, S.M. Hamlin, M. Simmonds, K. Stevens, S. Maloy, J. Parkhill, G. Dougan & A. Bäumler. Salmonella enterica serovar Typhi posseses a unique repertoire of fimbrial gene sequences. 2001. Infect. Immun. 69:2894-2901.

  130. Uchiya K., M.A Barbieri., K. Funato, A.H. Shah, P.D. Stahl & E.A. Groisman. 1999. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18:3924-1999.

  131. Uchiya K., E.A. Groisman & T. Nikai. 2004. Involvement of Salmonella pathogenicity island 2 in the up-regulation of interleukin-10 expression in macrophages:role of protein kinase A signal pathway. Infect. Immun. 72:1964-1973.

  132. Urquiza O. 1995. Purificación y caracterización parcial de proteínas con actividad enterotóxica tipo CT de Salmonella gallinarum. Tesis de Maestría. México, DF.: Facultad de Medicina Veterinaria y Zootecnia. UNAM.

  133. Valvidia R.H. & S. Falkow. 1997. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 277:2007-2011.

  134. Vázquez N.J. 1995. Preparaciones de Proteínas de la Membrana externa de Salmonella gallinarum para el diagnóstico de la Tifoidea Aviar. Tesis de Maestría. Facultad de Medicina Veterinaria y Zootecnia. UNAM, México.

  135. Vázquez N.J., V.Y López., G.F. Suárez y A. Verdugo-Rodríguez. 1999. Clonación y expresión de los genes que codifican para una entetotoxina similar a LT de Salmonella gallinarum. Enfermedades Infecciosas y Microbiología. 19: S63 Congreso Anual de la AMIMC.

  136. Vazquez-Torres A. & F. Fang. 2001. Salmonella evasión of the NADPH phagocyte oxidase. Microb. Infec. 3:1313-1320.

  137. Vázquez-Torres A., J. Jones-Carson, A.J. Baümler, S. Falkow, R. Valvidia, W. Brown, M. Le, R. Berggren, W.T. Parks & F.C. Fang. 1999. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 401:804-808.

  138. Vazquez-Torres A., Y. Xu, J. Jones-Carson, D.W. Holden, S.M. Lucia, M.C. Dinaurer, P. Mastroeni & F.C. Fang. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NAPH oxidase. Science. 287:1655-1658.

  139. Velden A.W.M., S.W. Lindgren, M.J. Worley & F. Heffron. 2000. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect Immun. 68:5702-5709.

  140. Verdugo-Rodríguez A., J. Balcázar, O. Urquiza, F. Suárez, L.A. Quintana, E. Calva & Y. López -Vidal. 1994. Partial characterization of a eltA-like gene. Bangkok, Thailand. 65th. Second Asia-Pacific Symposium on Typhoid Fever and other Salmonellosis. Bangkok, Thailand.

  141. Wallis T.S., M. Wood, P. Watson, S. Paulin, M. Jones & E. Galyov. 1999. Sips, Sops and SPIs but not stn influence Salmonella enteropathogenesis. Adv. Exp. Med. Biol. 473:275-280.

  142. Watson P.R., E.E. Galyov, S.M. Paulin, P.W. Jones & T.S. Wallis. 1998. Mutation of invH, but not stn reduces Salmonella-induced enteritis in cattle. Infect. Immun. 66:1432-1438.

  143. Withanage G.S.K., P. Kaiser, P. Wigley, C. Powers, P. Mastroeni, H. Brooks, P. Barrow, A. Smith, D. Maskell & I. McConnell. 2004. Rapid expression of chemokines and proinflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect. Immun. 72:2152-2159.

  144. Wood M.W., M.A Jones., P.R. Watson, S. Hedges, T.S. Wallis & E.E. Galyov. 1998. Identificación of pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol. 29:883-891.

  145. Zhang S., R.A. Kingsley, R.L. Santos, H. Andrews-Polymenis, M. Raffatellu, J. Figueiredo, J. Nunes, R.M. Tsolis, L.G. Adams & A.J. Bäumler. 2003. Molecular Pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71:1-12

  146. Zhang-Barber L., A.K. Turner & P.A. Barrow. 1999. Vaccination for control of Salmonella in poultry. Vaccine. 17: 2538-2545.

  147. Zhou D., M.S. Mooseker & J.E. Galán. 1999. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science. 283:2092-2095.

  148. Zierler M.K. & J.E. Galán. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63:4024-4028.



>Revistas >Revista Latinoamericana de Microbiología >Año2005, No. 1-2
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019