Entrar/Registro  
INICIO ENGLISH
 
Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio >Año 2008, No. 1


Terrés-Speziale AM
Diabetes mellitus: metas Six Sigma para el control de calidad analítico
Rev Latinoamer Patol Clin 2008; 55 (1)

Idioma: Español
Referencias bibliográficas: 72
Paginas: 3-16
Archivo PDF: 177.87 Kb.

[Texto completo - PDF]

RESUMEN

Antecedentes: En México, la diabetes mellitus (DM) representa un serio problema de salud pública, ya que en la actualidad es la primera causa de muerte en la población general donde se calcula que hay más de cuatro millones de pacientes, de los cuales un millón aún no ha sido diagnosticado. Este padecimiento tiene un elevado impacto económico que debe ser considerado desde el primer nivel de atención, a través de un diagnóstico confiable y oportuno, para lograr la contención de los costos inherentes al segundo y tercer niveles. El diagnóstico oportuno, basado en evidencias, es la piedra angular del manejo efectivo y eficaz de las enfermedades, dentro del cual el laboratorio clínico juega un rol fundamental. Se calcula que en los países desarrollados más de 80% de las decisiones médicas se toman sobre la base de las pruebas de laboratorio con un costo de menos de 30% y que esta tendencia se sigue incrementando. Con base en estas recomendaciones, organismos nacionales generan Normas Oficiales Mexicanas como por ejemplo la Norma Oficial Mexicana NOM-015-SSA2-1994 “Para la Prevención, Tratamiento y Control de la Diabetes Mellitus”, las cuales deben ser revisadas y actualizadas periódicamente. Objetivo: Establecer metas para el control de calidad analítico de las pruebas de laboratorio que se emplean en el diagnóstico y control de la DM desde la perspectiva de la Norma ISO15189:2003. “Requisitos Particulares para la Calidad y la Competencia de los Laboratorios Clínicos” en la que se enfatiza la importancia de la trazabilidad para los métodos de referencia, además de la medición de la variabilidad biológica y analítica para alcanzar la relevancia médica. Métodos: Se revisan los fundamentos y conceptos básicos de trazabilidad al método de referencia, medición de la variabilidad biológica grupal e individual de cada prueba conforme a los criterios de Tonks y Aspen, respectivamente, los cuales son utilizados para establecer metas analíticas hasta el nivel Six Sigma en cada uno de los mesurandos. Resultados: Se presentan cuadros sinópticos con metas analíticas para las pruebas en sangre, suero y orina utilizadas con mayor frecuencia en el diagnóstico y control de la DM. La información es presentada, destacando la importancia de documentar la trazabilidad y validación para reducir la incertidumbre analítica y aumentar la relevancia médica, de manera que además de ser útiles para los clínicos también pueda ser utilizada en el desarrollo, selección y adquisición de sistemas de laboratorio. Discusión: El punto clave para lograr el control confiable y oportuno de la DM se encuentra precisamente en el Laboratorio Clínico donde es clara la necesidad de contar con metas analíticas para el control de calidad que estén basadas en la variabilidad biológica, ya que la relevancia médica de los resultados depende no sólo de un buen control de calidad analítico, sino sobre todo de la buena selección de la tecnología y de métodos diagnósticos capaces de alcanzar las metas analíticas hasta el nivel Six Sigma. Establecer metas analíticas alcanzables y retadoras es el primer paso en cualquier sistema de control; es importante reconocer que las metas no sólo son útiles desde el punto de vista clínico, sino que también pueden ser utilizadas como herramientas de trabajo por los laboratorios de investigación, la industria y las autoridades del sector salud, para reducir el nivel de incertidumbre en el desarrollo, selección y adquisición de métodos diagnósticos, respectivamente.


Palabras clave: Control de calidad, diabetes mellitus, metas analíticas, Six Sigma, trazabilidad, incertidumbre, relevancia.


REFERENCIAS

  1. Tapia-Conyer R et al. Encuesta Nacional de Enfermedades Crónicas. México: INNSZ. Secretaría de Salud, 1993.

  2. Escobedo-de la Peña J, Rico-Verdín B. Incidencia y letalidad de las complicaciones agudas y crónicas de la diabetes mellitus en México. Salud Publica Mex 1996; 38: 236-242.

  3. Olaiz G, Rojas R, Barquera S, Shamah T, Aguilar C. Cravioto P. Encuesta Nacional de Salud 2000: La salud de los adultos. 2a. ed. Cuernavaca, México: Instituto Nacional de Salud Pública, 2003.

  4. Barquera S. Prevención de la diabetes mellitus: Un problema mundial. Salud Publica Mex 2003; 45 (5): 413-414.

  5. Rubin RJ, Altman WM, Mendelson DN. Health care expenditures for people with DM, 1992. J Clin Endocrinol Metab 1994; 78: 809A-F.

  6. American DM Association. Direct and indirect costs or DM in the United States in 1992. Alexandria, USA: American DM Association, 1993; 27.

  7. Gómez López VM et al. Diabetes mellitus e hipertensión arterial. Costos en estudios de laboratorio. Rev Med IMSS 2004; 42 (4): 331-335.

  8. González Pier E et al. Definición de prioridades para las intervenciones de salud en el Sistema de Protección en Salud de México. Salud Publica Mex 2007; 49 supl.1: S37-S52.

  9. Secretaría de Salud: Norma Oficial Mexicana NOM-015-SSA2-1994 para la prevención, tratamiento y control de la diabetes mellitus.

  10. Steinbrook R. Diabetes surveillance in New York state. NEJM 2006; 354: 545-554.

  11. Norma ISO 15189:2003. Requisitos particulares para la calidad y la competencia de los laboratorios clínicos.

  12. WASPaLM-IFCC. La Acreditación del Laboratorio. Declaración de Política. Rev Mex Patol Clin 2006; 53 (3): 174-177.

  13. NCCLS. Development of designated comparison methods for analytes in the clinical laboratory. Proposed Guideline. NCCLS publication NRSCL6-P2. 2nd ed. Villanova, PA: NCCLS, 1993.

  14. Secretaría de Salud: Norma Oficial Mexicana NOM-166-SSA1-1997 para la organización y funcionamiento de los laboratorios clínicos.

  15. Norma ISO/IEC 43-2:1997. Pruebas de aptitud por comparaciones entre laboratorios - Parte 2: Selección y uso de los esquemas de evaluación externa de la calidad por los cuerpos de la acreditación del laboratorio.

  16. Norma ILAC-G13:2000 Requisitos para proveedores de ensayos de aptitud o esquemas de evaluación externa de la calidad.

  17. Terrés-Speziale AM. Requisitos para proveedores de esquemas de evaluación externa de la calidad. Rev Mex Patol Clin 2006; 53 (1): 3-15.

  18. Westgard JO, Groth T. Power function graphs for statistical control rules. Clin Chem 1979; 25: 863-869.

  19. Bland JM, Altman DD. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 307-310.

  20. Westgard JO, Burnett RW. Precision requirements for cost-effective operation of analytical processes. Clin Chem 1990; 36: 1629-1632.

  21. Koch DD, Oryall JJ, Quam EF, Feldbruegge DH, Dowd DE et al. Selection of medically useful quality-control procedures for individual tests done in a multitest analytical system. Clin Chem 1990; 36: 230-233.

  22. Westgard JO. Charts of operating specifications (OPSpecs Charts) for assessing the precision, accuracy, and quality control needed to satisfy proficiency testing criteria. Clin Chem 1992; 38: 1226-1233.

  23. Westgard JO. A method evaluation decision chart (MEDx Chart) for judging method performance. Clin Lab Science 1995; 8: 277-283.

  24. Chesher D, Burnett L. Equivalence of critical error calculations and process capability index Cpk. Clin Chem 1997; 43: 1100-1101.

  25. Westgard JO. The Decision on Method Performance. In: Basic Method Validation. Madison, USA: Westgard QC, Inc, 1999. p. 125-134.

  26. Harry M, Schroeder R. Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. New York, USA: Doubleday, 2000.

  27. NCCLS. Evaluation of precision performance of quantitative measurement methods; Approved guideline. NCCLS document EP5-A2. 2nd ed. Wayne, USA: NCCLS, 2004.

  28. Terrés-Speziale AM. Importancia de la variabilidad biológica y de la relevancia médica en ISO 15189. Rev Mex Patol Clin 2003; 50 (3): 118-128.

  29. Terrés-Speziale AM. Estimación de la incertidumbre y de la variabilidad total en el laboratorio clínico. Rev Mex Patol Clin 2007; 53 (4): 185-196.

  30. Terrés-Speziale AM. Six Sigma: determinación de metas analíticas con base en la variabilidad biológica y la evolución tecnológica. Rev Mex Patol Clin 2007; 54 (1): 28-39.

  31. Cuevas J, Ruiz C, Tapia M, Torres C, Valenzuela L. Trazabilidad Metrológica. Take Control 2007; 4: 2-6.

  32. National Cholesterol Education Program Standardization Panel. Current status of blood cholesterol measurements in clinical laboratories in the United States. Clin Chem 1988; 34: 193-201.

  33. Westgard JO, Hyltoft Petersen P, Wiebe DA. Laboratory process specifications for assuring the quality in the US National Cholesterol Education Program. Clin Chem 1991; 37: 656-661.

  34. Wiebe DA, Westgard JO. Cholesterol - a model system to relate medical needs with analytical performance. Clin Chem 1993; 39: 1504-1513.

  35. Myers GL et al. Standardization of lipid and lipoprotein measurement. In: Rifai N, Warnick GR, editors. Laboratory measurements of lipids, lipoproteins and apolipoproteins. Washington, USA: AACC Press, 1994. p. 177-205.

  36. Fallest-Strobel PC, Olafsdottir E, Wiebe DA, Westgard JO. Comparison of NCEP performance specifications for triglycerides, HDL-, and LCL-cholesterol with operating specifications based on NCEP clinical and analytical goals. Clin Chem 1997; 43: 2164-2168.

  37. Caudill SP, Smith SJ, Cooper GR, Myers GL. Adequacy of NCEP recommendations for total cholesterol, triglycerides, HDLC and LDLC measurements. Clin Chem 1998; 44: 1063-1064.

  38. Caudill SP, Cooper GR, Smith SJ, Myers GL. Assessment of current National Cholesterol Education Guidelines for total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol measurements. Clin Chem 1998; 44: 1650-1658.

  39. Stevens VJ, Fantl WJ, Newman CB, Sims RV, Cerami A, Peterson CM. Acetaldehyde adducts with hemoglobin. J Clin Invest 1981; 67: 361-369.

  40. Ceriello A, Giugliano D, Dello Russo P, Sgambato S, D’Onofrio F. Increased glycosylated haemoglobin A1 opiate addicts: evidence for a hyperglycaemic effect of morphine. Diabetología 1982; 22: 379.

  41. Nathan DM, Francis TB, Palmer JL. Effect of aspirin on determinations of glycosylated hemoglobin. Clin Chem 1983; 29: 466-469.

  42. Goldstein DE, Little RR, England JD et al. Methods for quantitating glycosylated hemoglobins: high performance liquid chromatography and thiobarbituric acid colorimetry. In: Clarke WL, Larner J, Pohl SL, editors. Methods in DM Research. New York, USA: John Wiley, 1986. p. 475-504.

  43. Little RR, England JD, Wiedmeyer HM et al. Interlaboratory standardization of glycated hemoglobin determinations. Clin Chem 1986; 32: 358-360.

  44. DCCT Research Group. Feasibility of centralized measurements of glycated in the DM control and complications trial: a multicenter study. Clin Chem 1987; 33: 2267-2271.

  45. Little RR, Wiedmeyer HM, England JD et al. Interlaboratory comparison of glycated hemoglobin results: College of American Pathologists (CAP) survey data. Clin Chem 1991; 37: 1725-1729.

  46. Ceriello A, Giugliano D, Quatraro A, Donzella C, Dipalo G, Lefebvre PJ. Vitamin E reduction of protein glycosylation in diabetes. New prospect for prevention of diabetic complications? Diabetes Care 1991; 14: 68-72.

  47. Bodor G, Little R, Garrett N et al. Standardization of glycated hemoglobin determinations in the clinical laboratory: three years experience. Clin Chem 1992; 38: 2414-2418.

  48. Little RR, Wiedmeyer HM, England JD et al. Interlaboratory standardization of measurements of glycated hemoglobin. Clin Chem 1992; 38: 2472-2478.

  49. Davie SJ, Gould BJ, Yudkin JS. Effects of vitamin C on glycosylation of proteins. Diabetes 1992; 41: 167-173.

  50. Feichtner M, Ramp J, England B et al. Affinity binding assay of glycated hemoglobin by two-dimensional centrifugation referenced to hemoglobin A1c. Clin Chem 1992; 38: 2372-2379.

  51. DCCT: DM control and complications trial or DCCT. New Engl J Med 1993; 329: 977-986.

  52. Weykamp CW, Penders TJ, Frits AJ et al. Effect of calibration on dispersion of glycated hemoglobin values as determined by 111 laboratories using 21 methods. Clin Chem 1994; 40: 138-144.

  53. Weykamp CW, Martina WV, van der Dijs F, Penders TJ, van der S lik W, Muskiet F. Hemoglobins S and C: reference values for glycated hemoglobin in heterozygous, double-heterozygotes and homozygous subjects, as established by 13 methods. Clin Chem Acta 1994; 231: 161-171.

  54. Little R, Mathew AS, Tennill AL, Rohlfing CL, Goldstein DG. Measurement of glycated hemoglobin (GHB) in patients with chronic renal failure (CRF): are ion-exchange HPLC results really invalid? (abstract). Clin Chem 1997; 43 (1): S136.

  55. Hansen KW, Wrlandsen E, Helleberg K, Danielsen H. Uremia and HbA1c. Diabetes Care 1997; 20: 1341-1342.

  56. Chevenne D, Fonfrede M, Ducrocq R, Chauffert M, Trivin F. Uremia and HbA1c measured by high-performance liquid chromatography. Diab Care 1998; 21: 463-464.

  57. Blakney G, Higgins TN, Holmes DJ. Comparison of hemoglobin A1c results by two different methods on patients with structural hemoglobin variants. Clin Biochem 1998; 31: 619-626.

  58. Holbrook I. Measurement of HbA1c by high-performance liquid chromatography in patients with renal failure. Ann Clin Biochem 1999; 36: 238-239.

  59. Tarim O, Kucukerdogan A, Gunay U, Eralp O, Ercan I. Effects of iron deficiency anemia on hemoglobin A1c in type 1 diabetes mellitus. Pediatr Int 1999; 41: 357-362.

  60. Weykamp CW, Miedema K, de Haan T, Doleman C. Carbamylated hemoglobin interference in glycated hemoglobin assays. Clin Chem 1999; 45: 438-440.

  61. Chachou A, Randoux, Millart H, Chanard J, Gillery P. Influence of in vivo hemoglobin carbamylation on HbA1c measurements by various methods. Clin Chem Lab Med 2000; 38: 321-326.

  62. Thoma J, Stirn F, Kutter D. Influence of urea on HbA1c-determinations by Menarini HA 8140 and on the difference between immunoturbidimetric and HPLC HbA1c results. Clin Lab 2000; 46: 261-268.

  63. Frank EL, Moulton L, Little RR, Wiedmeyer HM, Rohlfing C, Roberts WL. Effects of hemoglobin C and S traits on seven glycated hemoglobin methods. Clin Chem 2000; 46: 864-867.

  64. Roberts WL, Frank EL, Moulton L, Papadea C, Noffsinger J, Ou C. Effects of nine hemoglobin variants on five glycated hemoglobin methods. Clin Chem 2000; 46: 569-572.

  65. Musalmah M, Normah J, Mohamad WBW, Salwah ON, Fatah HA, Zahari NAN. Effect of hemoglobin E on glycosylated hemoglobin determinations using different commercial kits. Med J Malaysia 2000; 55: 352-356.

  66. Higgins TN, Blakney GB, Dayton J. Analytical evaluation of the Bio-Rad Variant II automated HbA1c analyzer. Clin Biochem 2001; 34: 361-365.

  67. Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycated hemoglobin. Clin Chem 2001; 47: 153-163.

  68. DCCT. Analysis of the DCCT glucose profile data. DM Care 2002; 25: 275-278.

  69. Roberts WL, Barun KD, Brown D, Hanbury CM, Hoyer JD et al. Hemoglobin C and S trait on eight glycated hemoglobin methods. Clin Chem 2002; 48: 383-385.

  70. Little RR, Tennill AL, Rohlfing C, Wiedmeyer H, Khanna R et al. Can glycohemoglobin (GHB) be used to assess glycemic control in patients with chronic renal failure? Clin Chem 2002; 48: 784-786.

  71. Terrés-Speziale AM. Programa nacional de estandarización de glicohemoglobina. Rev Mex Patol Clin 2006; 53 (3): 157-165.

  72. Terrés-Speziale A. Confiabilidad y aplicabilidad de los nuevos criterios internacionales para el diagnóstico de DM. Rev Mex Patol Clin 2002; 49 (4): 212-220.



>Revistas >Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio >Año2008, No. 1
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019