medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 3

<< Back Next >>

Med Int Mex 2021; 37 (3)

Bacteriology of non-infectant isolations in a hospital of Ciudad Juarez, Mexico

Casanova-Cardiel LJ, Estrada-Tapia LL, Amezcua-Rentería A
Full text How to cite this article

Language: Spanish
References: 26
Page: 335-342
PDF size: 229.25 Kb.


Key words:

Nosocomial infections, Health-care associated infections, Methicillin resistance, Antibiotic treatment.

ABSTRACT

Background: Adequate treatment of health-care associated infections and bacterial resistance are public health problems that merit local and global solution; its control demands to know the local ecology.
Objective: To report the bacterial isolations of samples from patients of General Hospital of Ciudad Juarez.
Materials and Methods: A prospective study in which were obtained bacterial isolates and sensitivity patterns of representative samples derived from patients with more than 48 hospitalized hours who did not reach case definition criteria at the General Hospital of Ciudad Juarez, Mexico, from 2013 to 2015.
Results: The methicillin resistance of S. aureus was of 68% (62 isolates) and 81% in S. epidermidis (42 isolates). Pseudomonas aeruginosa (48 isolates) had resistance to ceftazidime and cefepime of 69%, quinolones 60%, imipenem 46%, meropenem 48%, piperacillin/tazobactam 25%, amikacin 46%, gentamicin 54%, and quinolones 60%. E. coli (59 isolates) had resistance to ceftriaxone 61%, cefepime 56%, imipenem 3%, meropenem 2%, ciprofloxacin 76%, levofloxacin 71%, moxifloxacin 81%. Nine strains of Klebsiella pneumoniae without resistance to carbapenems and aminoglycosides. Six strains of A. baumanni and two of S. maltophilia were isolated.
Conclusions: With this information we are able to know which empirical antibiotic treatment to start and which not prescribe.


REFERENCES

  1. Fridkin, S. What Healthcare-Associated Infections are resistant in your state? Medscape Multispeciality. News &Perspective 2016. http://www.medscape.com/view article/865511?nlid=108075_801&src=WNL_mdplsfeat_ 160712_mscpedit_infd&uac=32644BV&spon=3&im pID=1154358&faf=1.

  2. Friedman C, Newsom W. Conceptos básicos de control de infecciones. International Federation of Infection Control, 2011. 2ª ed. 2011. http://theific.org/wp-content/ uploads/2014/08/Spanish_front_PRESS.pdf.

  3. Secretaría de Salud. Norma Oficial Mexicana 045 NOM- 045-SSA2-2005, Para la vigilancia epidemiológica, prevención y control de las infecciones nosocomiales. Diario Oficial de la Federación 20/11/2009. http://dof.gob.mx/ nota_detalle.php?codigo=5120943&fecha=20/11/2009.

  4. Sydnor ERM, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 2011; 24: 141-73. doi. 10.1128/CMR.00027-10.

  5. Casanova-Cardiel LJ, Castañón-González JA, León-Gutiérrez MA, Becerra-Lara JJ, et al. Microbiología de secreciones bronquiales en una unidad de cuidados intensivos. Rev Med IMSS 2008; 46: 329-38.

  6. Garnacho-Montero J, García-Garmendia JL, Barrero-Almodóvar A, Jiménez-Jiménez FJ, et al. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 2003; 31: 2742-51. doi. 10.1097/01.CCM.0000098031.24329.10.

  7. CDC. Core Elements of Hospital Antibiotic Stewardship Programs. Atlanta, GA: US Department of Health and Human Services, CDC; 2019 Disponible en https://www.cdc.gov/ antibiotic-use/core-elements/hospital.html.

  8. Hidron AI, Edwards JR, Patel J, Horan TC, et al. Antimicrobial‐ resistant pathogens associated with healthcare‐associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007. Infect Control Hosp Epidemiol 2008; 29: 996-1011.

  9. Enright MC, Robinson DA, Randle G, Feil EJ, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci 2002; 99: 7687-92. doi. 10.1073/pnas.122108599.

  10. Saïd-Salim B, Mathema B, Kreiswirth BN. Community- Acquired Methicillin-Resistant Staphylococcus aureus: An Emerging Pathogen. Infect Control Hosp Epidemiol 2003; 24: 451-5. doi. 10.1086/502231.

  11. Barros EM, Ceotto H, Bastos MCF, dos Santos KRN, et al. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 2012; 50: 166-8. doi. 10.1128/JCM.05563-11.

  12. O’Driscoll T, Crank CW. Vancomycin-resistance enterococcal infections: epidemiology, clinical manifestations and optimal management. Infect Drug Resist 2015; 8: 217-30 doi. http://dx.doi.org/10.2147%2FIDR.S54125.

  13. Sanders CC. Mechanisms responsible for cross-resistance and dichotomous resistance among the quinolones. Clin Infect Dis 2001; 32 (Suppl 1): S1-S doi. 10.1086/319369.

  14. Auwaerter PG. Fluoroquinolones not first line: FDA Advisory Reinforces Standard Practice in Ambulatory Care. Medscape Infectious Diseases, News and Perspective 2016. http://www.medscape.com/viewarticle/863778.

  15. Marchant J. When the antibiotics turn toxic. Nature 2018; 555: 431-3. doi. 10.1038/d41586-018-03267-5.

  16. McMillen M. Fluoroquinolones overprescribed despite dangers. WebMed Health News. Feb. 7, 2019 https:// www.webmd.com/drug-medication/news/20190208/ fluoroquinolones-over-prescribed-despite-dangers.

  17. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase- producing Enterobacteriaceae. Emerg Infect Dis 2011; 17: 1791-8. doi. 10.3201/eid1710.110655.

  18. Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β lactamases producing superbugs-havoc in the intensive care units of Punjab India. J Clin Diagn Res 2013; 7: 70-3. doi. 10.7860/JCDR/2012/5016.2673.

  19. Moellering RC. NDM-1-A cause for worldwide concern. N Engl J Med 2010; 363: 2377-9 doi. 10.1056/NEJMp1011715.

  20. Shon AS, Russo TA. Hypervirulent Klebsiella pneumoniae: The next superbug. Future Microbiol 2012; 7: 669-71. doi. 10.2217/fmb.12.43.

  21. Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 2009; 73: 338-44. doi. 10.1016/j.jhin.2009.04.020.

  22. Fujitani S, Sun HY, Yu VL, Weingarten JA. Pneumonia due to Pseudomonas aeruginosa Part I: Epidemiology, clinical diagnosis, and source. Chest 2011; 139: 909-19. doi. 10.1378/chest.10-0166.

  23. Sun HY, Fujitani S, Quintiliani R, Yu VL. Pneumonia due to Pseudomonas aeruginosa Part II: Antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy. Chest 2011; 139: 1172-85. doi. 10.1378/chest.10-0167.

  24. Navon-Venezia, Ben-Ami R, Carmeli Y. Update on Pseudomonas aeruginosa and Acinetobacter baumanni infections in the healthcare setting. Curr Op Infect Dis 2005; 18: 306- 13. doi. 10.1097/01.qco.0000171920.44809.f0.

  25. Bassetti M, Vena A, Croxatto A, Righi E. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018; 7: 1-18 doi. 10.7573/dic.212527.

  26. McGann P, Snesrud E, Maybank R, Corey B, et al. Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF Plasmid: First report of mcr-1 in the USA. Antimicrob Agents Chemother 2016; 60: 4420-1. doi. 10.1128/AAC.01103-16.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2021;37