medigraphic.com
SPANISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Electronic)
ISSN 0864-0289 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 2

<< Back Next >>

Rev Cubana Hematol Inmunol Hemoter 2020; 36 (2)

Hereditary hemolytic anemias due to erythrocyte membrane defects

Soler NG, Peña LK, Forrellat BM
Full text How to cite this article

Language: Spanish
References: 37
Page: 1-19
PDF size: 532.56 Kb.


Key words:

congenital hemolytic anemias, hereditary hemolytic anemias, hereditary spherocytosis, hereditary elliptocytosis, membrane defects.

ABSTRACT

Introduction: The erythrocyte membrane, like the membranes of other cell types, is composed of a lipid bilayer that is stabilized by specific proteins, glycolipids and other specialized molecules. Mutations in the genes that encode and regulate these proteins and their interactions cause changes in the shape of erythrocytes and are the cause of hereditary hemolytic anemias.
Objective: To describe the molecular and clinical peculiarities and the laboratory diagnosis of the main hereditary hemolytic anemias due to defects in the erythrocyte membrane.
Methods: A literature review was carried out, in English and in Spanish, through the PubMed website and the Google Scholar search engine, of articles published in the last ten years. An analysis and summary of the revised bibliography was made.
Information analysis and synthesis: Mutations affecting the erythrocyte membrane are varied and heterogeneous. The effect on the phenotype can be classified into five main categories: hereditary spherocytosis, hereditary elliptocytosis and hereditary pyropoikilocytosis, Southeast Asian ovalocytosis, hereditary acantocytosis, and hereditary stomatocytosis.
Conclusions: Careful observation of erythrocyte morphology in peripheral blood smears and molecular studies allow an accurate diagnosis, in addition to confirming the genotype-phenotype correlation in these diseases.


REFERENCES

  1. Haley K. Congenital hemolytic anemia. Med Clin North Am. 2017;101:361-74. doi: 10.1016/j.mcna.2016.09.008

  2. Hoffbrand AV, Catovsky D, Tuddenham EGD, eds. Postgraduate Haematology. 5th ed. Oxford: Blackwell Publishing; 2005.

  3. King MJ, Zanella A. Hereditary red cell membrane disorders and laboratory diagnostic testing. Int J LabHematol. 2013;35:237-43. doi: 10.1111/ijlh.12070.

  4. Shohet SB, Bicknese SE. Defining the architecture of the red blood cell membrane: newer biophysical approaches. Am J Hematol 1993;42:19-24. doi:10.1002/ajh.2830420106

  5. Gallagher PG, Forget BG. Hematologically important mutations: spectrin and ankyrin variants in hereditary spherocytosis. Blood Cells, Molecules and Diseases. 1998;24:539-43. doi.10.1006/bcmd.1998.0217

  6. Kim Y, Park J, Kim M. Diagnostic approaches for inherited hemolytic anemia in the genetic era. BloodResearch. 2017;52(2):84-94. doi: 10.5045/br.2017.52.2.84

  7. Ying LI, Liyuan Lu, Juan LI. Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy. Cell Biochem Biophys. 2016;74:365-71. doi: 10.1007/s12013-016-0755-4

  8. Eber S, Lux SE. Hereditary spherocytosis-defects in proteins that connect the membrane skeleton to the lipid bilayer. Seminars in Hematology. 2004;41(2):118-41. doi: 10.1053/j.seminhematol.2004.01.002

  9. Wong RJ, Bhutani VK, Stevenson DK. The Importance of Hemolysis and Its Clinical Detection in Neonates with Hyperbilirubinemia. Curr Pediatr Rev. 2017;13(3):193-8. doi: 10.2174/1573396313666170807121444.

  10. He BJ, Liao L, Deng ZF, Tao YF, Xu YC, Lin FQ. Molecular Genetic Mechanisms of Hereditary Spherocytosis: Current Perspectives. Acta Haematol. 2018;139(1):60-6. doi: 10.1159/000486229.

  11. Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytica anemias. Br J Haematol. 2016;174:806-14. doi: 10.1111/bjh.14131.

  12. Arora RD, Dass J, Maydeo S, Arya V, Kotwal J, Bhargava M. Utility of mean sphered cell volume and mean reticulocyte volume for the diagnosis of hereditary spherocytosis. Hematology. 2018;16:1-4. doi: 10.1080/10245332.2018.1423879.

  13. Gallagher PG. Disorders of erythrocyte hydration. Blood. 2017;130(25):2699-708. doi: 10.1182/blood-2017-04-590810.

  14. Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ; General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis and management of hereditary spherocytosis-2011 update. Br J Haematol. 2012;156:37-49. doi: 10.1111/j.1365-2141.2011.08921.x.

  15. Llaudet-Planas E, Vives-Corrons JL, Rizzuto V, Gómez-Ramírez P, Sevilla Navarro J, CollSibina MT, et al. Osmotic gradient ektacytometry: A valuable screening test for hereditary spherocytosis and other red blood cell membrane disorders. Int J Lab Hematol. 2018;40(1):94-102. doi: 10.1111/ijlh.12746.

  16. Emilse LAM, Cecilia H, María TM, Eugenia MM, Alicia IB, Lazarte SS. Cryohemolysis, erythrocyte osmotic fragility, and supplementary hematimetric indices in the diagnosis of hereditary spherocytosis. Blood Res. 2018;53(1):10-7. doi: 10.5045/br.2018.53.1.10.

  17. Attie M, Cocca A, Basack N, Schwalb G, Drelichman G, Aversa L. Actualización en Esferocitosis Hereditaria. Hematologia. 2012;16(2):106-13.

  18. Russo R, Andolfo I, Manna F, Gambale A, Marra R, Rosato BE, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018;93(5):672-82. doi: 10.1002/ajh.25058.

  19. Shibuya A, Kawashima H, Tanaka M. Analysis of erythrocyte membrane proteins in patients with hereditary spherocytosis and other types of haemolyticanaemia. Hematology. 2018;6:1-7. doi: 10.1080/10245332.2018.1455278.

  20. Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858(7 PtA):1507-32. doi: 10.1016/j.bbamem.2016.03.030.

  21. Shin S, Jang W, Kim M, Kim Y, Park SY, Park J, et al. Targeted next-generation sequencing identifies a novel nonsense mutation in SPTB for hereditary spherocytosis: A case report of a Korean family. Medicine (Baltimore). 2018;97(3):e9677. doi: 10.1097/MD.0000000000009677.

  22. Wang X, Shen N, Huang M, Lu Y, Hu Q. Novel hereditary spherocytosis-associated splice site mutation in the ANK1 gene caused by parental gonosomalmosaicism. Haematologic. 2018;103(5):e219-22. doi: 10.3324/haematol.2017.186551.

  23. Niss O, Chonat S, Dagaonkar N, Almansoori MO, Kerr K, Rogers ZR, et al. Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis. 2016;61:4-9. doi: 10.1016/j.bcmd.2016.07.003.

  24. Ma S, Qin J, Wei A, Li X, Qin Y, Liao L, et al. Novel compound heterozygous SPTA1 mutations in a patient with hereditary elliptocytosis. Mol Med Rep. 2018;17(4):5903-11. doi: 10.3892/mmr.2018.8632.

  25. Randon J, Boulanger L, Marechal J, Garbarz M, Vallier A, Ribeiro L, et al. A variant of spectrin low-expression allele alpha-LELY carrying a hereditary elliptocytosis mutation in codon 28. B J Haematol. 1994;88:534-40.doi: 10.1111/j.1365-2141.1994.tb05070.x

  26. Gali VL, Lynch DW. Hereditary Pyropoikilocytosis: A Rare But Not Uncommon Disease. S D Med. 2016;69(5):208-9.

  27. Glele-Kakai C, Garbarz M, Lecomte MC, Leborgne S, Galand C, Bournier O, et al. Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. B J Haematol. 1996;95:57-66. doi:10.1046/j.1365-2141.1996.d01-1869.x

  28. Goheen MM, Campino S, Cerami C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. B J Haematol. 2017;179(4):543.56. doi:10.1111/bjh.14886

  29. Thomas B, Perrin J. Acquired »,» ®,® §,§ ­,­ ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,Ú ú,ú Û,Û û,û Ù,Ù ù,ù ¨,¨ Ü,Ü ü,ü Ý,Ý ý,ý ¥,¥ ÿ,ÿ ¶,¶ pyro »,» ®,® §,§ ­,­ ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,Ú ú,ú Û,Û û,û Ù,Ù ù,ù ¨,¨ Ü,Ü ü,ü Ý,Ý ý,ý ¥,¥ ÿ,ÿ ¶,¶ -poikilocytosis. Blood. 2017;130(25):2808. doi: 10.1182/blood-2017-08-802678.

  30. Grootenboer S, SchischmanoffPO, Laurendeau I, Cynober T, Tchernia G, Dommergues JP, et al. Pleiotropic syndrome of dehydrated hereditary stomatocytosis, pseudohyperkalemia, and perinatal edema maps to 16q23-q24. Blood. 2000;96:2599-605.

  31. Darghouth D, Koehl B, Heilier JF, Madalinski G, Bovee P, Bosman G, et al. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis. Haematologica. 2011;96(12):1861-5. doi: 10.3324/haematol.2011.045179.

  32. Beaurain G, Mathieu F, Grootenboer S, Fiquet B, Cynober T, Tchernia G, et al. Dehydrated hereditary stomatocytosis mimicking familial hyperkalaemic hypertension: clinical and genetic investigation. Eur J Haematol. 2007;78(3):253-9. doi: 10.1111/j.1600-0609.2006.00811.x.

  33. Qureshi A, Salman M, Moiz B. Rhnull: a rare blood group phenotype. J Pak Med Assoc. 2010;60(11):960-1.

  34. Garnett C, Bain BJ. South-East Asian ovalocytosis. Am J Hematol. 2013;88(4):328. doi: 10.1002/ajh.23379.

  35. Yis U, Becker K, Yilmaz Bengoa S, Çirak S. Acanthocytosis and Hyperckemia. Turk J Haematol. 2017. doi: 10.4274/tjh.2017.0142

  36. Wang LR, McIntyre AD, Hegele RA. Complex genetic architecture in severe hypobetalipoproteinemia. Lipids Health Dis. 2018;17(1):48. doi: 10.1186/s12944-018-0680-1.

  37. Walker RH, Miranda M, Jung HH, Danek A. Life expectancy and mortality in chorea-acanthocytosis and McLeod síndrome. Parkinsonism & Related Disorders. 2019;60:158-61. doi:10.1016/j.parkreldis.2018.09.003




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2020;36