medigraphic.com
SPANISH

Revista Cubana de Hematología, Inmunología y Hemoterapia

ISSN 1561-2996 (Electronic)
ISSN 0864-0289 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

Rev Cubana Hematol Inmunol Hemoter 2020; 36 (4)

Specificities and isotypes of erythrocytes autoantibodies in patients with warm autoimmune hemolytic anemia

Soler NG, Bencomo HA, Aquino RS, Romero DY
Full text How to cite this article

Language: English
References: 37
Page: 1-23
PDF size: 434.83 Kb.


Key words:

autoimmune hemolytic anemia, warm autoimmune hemolytic anemia, monoclonal antibody-specific immobilization of erythrocyte antigens assay, erythrocytes autoantibodie, specificities of erythrocytes autoantibodies, isotypes of erythrocytes autoantibodies.

ABSTRACT

Introduction: Autoimmune hemolytic anemia is a rare disorder characterized by hemolysis mediated by autoantibodies directed against red blood cells. The demonstration of antibody specificity is a very difficult procedure since autoantibodies in general are nonspecific of antigens and react with all erythrocytes analyzed. Occasionally, specificity is observed against the Rh system antigens.
Objective: To determinate the specificity of erythrocytes autoantibodies in DAT positive autoimmune hemolytic anemia by MAIEA technique.
Methods: The specificity and isotype of erythrocyte autoantibodies were determined in the eluate of 109 blood samples from patients with warm autoimmune hemolytic anemia, by means of the MAIEA technique and the use of monoclonal antibodies that recognized 11 blood group systems and the protein CD47.
Results: In 100% of cases autoantibodies against Rh system antigens were detected; in 24 cases we detected autoantibodies of IgA and IgM isotypes that recognized different antigens that were recognized by IgG isotype autoantibodies. For idiopathic and secondary warm autoimmune hemolytic anemias, predominance was observed against three or more specificities. IgG was detected in 99.09% of the eluates, IgA in 35.77% and IgM in 16.51%. The high degree of hemolysis was related to the presence of several isotype autoantibodies against four or more blood group specificities.
Conclusions: The MAIEA technique is a sensitive method that can be used to determine the specificities and isotypes of autoantibodies in patients with warm autoimmune hemolytic anemia.


REFERENCES

  1. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev ClinImmunol. 2018;14(10):857-72. DOI: http://10.1080/1744666X.2018.1521722

  2. Kalfa TA. Warm antibody autoimmune hemolytic anemia. Hematology Am Soc Hematol Educ Program. 2016;1:690-7. DOI: http://10.1182/asheducation-2016.1.690

  3. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A; British Society for Haematology. The diagnosis and management ofprimary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. DOI: http://10.1111/bjh.14478

  4. Barros M, Morris A, Bordin O. Warm Autoimmune Hemolytic Anemia: Recent Progress in Understanding the Immunobiology and the Treatment. Transfus Med Rev. 2010; 24(3):195-210. DOI: http://10.1016/j.tmrv.2010.03.002

  5. Petty AC, Green CA, Daniels GL. The monoclonal antibody-specific immobilization of erythrocyte antigens assay (MAIEA) in the investigation of human red-cell antigens and their associated membrane proteins. Transfus Med. 1997;7(3):179-88. DOI: http://10.1046/j.1365-3148.1997.d01-24.x

  6. Rubin H. Antibody elution from red blood cells. J Clin Pathol. 1963;16:70-3.

  7. Burton NM, Daniels G. Structural modelling of red cell surface proteins. Vox Sang. 2011; 100: 129-39. DOI: http://10.1111/j.1423-0410.2010.01424.x

  8. Daniels G. Rh and RHAG Blood Group Systems. In: Human Blood Groups. 3rd ed. London: John Wiley & Sons; 2013. p.182-258. ISBN 978-1-118-49354-0.

  9. Naik R. Warm autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015;29(3):445-53.

  10. Barker RN, Hall AM, Standen GR, Jones J, Elson CJ. Identification of T-cell epitopes on the rhesus polypeptides in autoimmune hemolytic anemia. Blood. 1997;90(7):2701-15.

  11. Daniels G. Human Blood Groups. 3rd ed. London: John Wiley & Sons; 2013. ISBN 978-1-118-49354-0.

  12. Petz LD, Garratty G. Immune Hemolytic Anemias, 2nd Ed. Philadelphia: Churchill Livingstone; 2004.

  13. Hall AM, Ward FJ, Shen CR, Rowe C, Bowie L, Devine A, et al. Deletion of the dominant autoantigen in NZB mice with autoimmune hemolytic anemia: effects on autoantibody and T-helper responses. Blood. 2007; 110: 4511-7. DOI: http://10.1182/blood-2007-06-094383

  14. Janvier D, Lam Y, Lopez I, Elakredar L, Bierling P. A major target for warm immunoglobulin?G autoantibodies: the third external loop of Band 3. Transfusion. 2013; 53(9): 1948-55. DOI: http://10.1111/trf.12026

  15. Figueroa D. The Diego blood group system: a review. Immunohematol. 2013; 29:73-81.

  16. Poole J. Red cell antigens on band 3 and glycophorin A. Blood Rev. 2000; 14:31-43. DOI: http://10.1o54/blre.1999.0124

  17. Podbielska M, Fredriksson SA, Nilsson B, Lisowska E, Krotkiewska H.ABH blood group antigens in O-glycans of human glycophorin A. Arch Biochem Biophys. 2004;429:145-53.

  18. Groves JD, Tanner MJA. Glycophorin A facilitates the expression of human Band 3-mediated anion transport in Xenopus oocytes. J Biol Chem. 1992; 267: 22163-70.

  19. Hassoun H, Hanada T, Lutchman M, Sahr KE, Palek J, Hanspal M, et al. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood.1998; 91: 2146-51.

  20. Isacke CM, Horton MA. The Adhesion Molecule Facts Book, 2nd ed. London: Academic Press; 2000.

  21. Yuseff MI, Pierobon P, Reversat A, Lennon-Dumenil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol.2013; 13(7): 475-8. DOI: http://10.1038/nri3469

  22. Krljanac B, Weih D, Jacobsen ID, Hu D, Koliesnik I, Reppe K, et al. NF-?B2/p100 deficiency impairs immune responses to T-cell-independent type 2 antigens. Eur J Immunol.2014; 44: 662-72. DOI: http://10.1002/eji.201343484

  23. Van Egmond M, Vidarsson G, Bakema JE. Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol Rev.2015; 268: 311-27. DOI: http://10.1111/imr.12333

  24. Meyer-Bahlburg A. B-1 cells as a source of IgA. Ann NY AcadSci.2015; 1362: 122-31. DOI: http://10.1111/nyas.12801

  25. Berentsen S. Role of Complement in Autoimmune Hemolytic Anemia. Transfus Med Hemother.2015; 42:303-10. DOI: http://10.1159/000438964

  26. Bencomo A, Alfonso ME, Ávila O, Espinosa E, Jaime JC, Hernández P. Relación entre hemólisis con la presencia y cuantificación de inmunoglobulinas en hematíes, en la anemia hemolítica autoinmune. Rev Cubana Hematol Inmunol Hemoter.2010; 26(4):315-27.

  27. Garratty G, Arndt P, Domen R, Clarke A, Sutphen-Shaw D, Clear J, et al. Severe autoimmune hemolytic anemia associated with IgM warm autoantibodies directed against determinants on or associated with glycophorin A. Vox Sang. 1997; 72: 124-30. DOI: http://10.1046/j.1423-0410.1997.7220124.x

  28. Tomita A, Radike EL, Parker CJ. Isolation of erythrocyte membrane inhibitor of reactive lysis type II. Identification as glycophorin A. J Immunol.1993; 151: 3308-23.

  29. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol. 2002; 2: 580-92. DOI: http://10.1038/nri856

  30. Hogarth PM. Fc Receptors: Introduction. ImmunolRev.2015; 268:1-5. DOI: http://10.1111/imr.12372

  31. Flegel WA. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion. 2015; 55: S47-S58. DOI: http://10.1111/trf.13147

  32. Gomes MM, Herr AB. IgA and IgA-specific receptors in human disease: structural and functional insights into pathogenesis and therapeutic potential. Springer Sem Immunopathol. 2006; 28(4): 383-95. DOI: http://10.1007/s00281-006-0048-x

  33. Liszewski MK, Java A, Schramm EC, Atkinson JP. Complement Dysregulation and Disease: Insights from Contemporary Genetics. Annu Rev Pathol. 2017;12:25-52. DOI: http://10.1146/annurev-pathol-012615-044145

  34. Thielen AJF, Zeerleder S, Wouters D. Consequences of dysregulated complement regulators on red blood cells. Blood Rev.2018;32:280-8. DOI: http://10.1016/j.blre.2018.01.003

  35. Weinstock C, Anliker M, von Zabern I. CD59: A long-known complement inhibitor has advanced to a blood group system. Immunohematol. 2015;31:145-51.

  36. Shinoda K, Taki Hi, Hounoki H, Ogawa R, Sugiyama E, Tobe K. Severe autoimmune hemolytic anemia associated with IgM warm auto-antibodies in primary Sjögren's syndrome. Int J Rheum Dis. 2010; 13: 94-6.

  37. Takahiko I, Natsuka T, Takashiro K, Yoshimura K, Yamamoto K, Hara S, et al. IgM-mediated Warm Autoimmune Hemolytic Anemia: An Autopsy Report. Intern Med. 2019;58: 999-1002. DOI: http://10.2169/internalmedicine.1291-18




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hematol Inmunol Hemoter . 2020;36