medigraphic.com
SPANISH

Revista Médica de Costa Rica y Centroamérica

Colegio de Medicos y Cirujanos República de Costa Rica
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 629

<< Back Next >>

Rev Med Cos Cen 2020; 86 (629)

Producción de formulaciones terapéuticas de inmunoglobulinas anti-SARS-CoV-2 purificadas a partir de plasma de pacientes convalescientes o equinos inmunizados con proteínas virales recombinantes

Instituto Clodomiro Picado
Full text How to cite this article

Language: Spanish
References: 20
Page: 81-87
PDF size: 300.12 Kb.


Key words:

coronavirus, SARS-CoV-2, antibodies, immunotherapy, convalescent plasma.

ABSTRACT

Currently, there is no approved treatment for the infection with the new SARS-CoV-2 coronavirus, the infectious agent that causes the disease known as COVID-19.
Instituto Clodomiro Picado (University of Costa Rica) and the Costa Rican Social Security System (Caja Costarricense del Seguro Social) recently planned the possibility to utilize the human resources, as well as the infrastructure and equipment used during the last decades in the production of antivenoms, to confront the current pandemia, in terms of the production of immunobiologicals for the treatment of patients with this disease.
Two formulations of passive immunotherapy will be produced to treat patients in the advanced stages of the disease. The first one, a formulation of human immunoglobulins from patients who have recovered from the disease (convalescent plasma), and the second, a formulation prepared from polyclonal antibodies purified from the plasma of horses which were immunized with several recombinant viral antigens.
In this way, our country could have in a short time, safe and effective immunobiologicals for the treatment of the patients in critical stages of the disease due to SARS-CoV-2 infection, hospitalized in our public health system.


REFERENCES

  1. Li, G., DeClercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Rev Drug Discov 2020;19:149-50

  2. Lan, J., Ge, J., Yu, J., et al. Structure of the SARSCoV- 2 spike receptor binding domain bound to the ACE2 receptor. Nature 2020 Epub ahead of print: doi.org/10.1038/s41586-020-2180-5

  3. Ju, B., Zhang, Q., Ge, X, et al. Potent human neutralizing antibodies elicited 1 by SARS-CoV-2 infection. BioRxiv 2020. Epub ahead of print: doi.org/10.1101/2020.03.21.990770

  4. Tiberghien, P., de Lambalerie, X., Morel, P., et al. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how. Vox Sang 2020 Epub ahead of print doi: 10.1111/vox.12926

  5. Casadevall, A., Pirofski, L-A. The convalescent sera option for containing COVID-19. J Clin Invest 2020. Epub ahead of print doi.org/10.1172/JCI138003

  6. Yi, Y., Lagniton PNP, Ye, S, et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci 2020;16:1753- 1766

  7. Shetty, R. Ghosh, A., Honavar, S.G., et al. Therapeutic opportunities to manage COVID- 19/SARS-CoV-2 infection: Present and future. Indian J Ophtalmol 2020. Epub ahead of print doi: 14.4103/ijo.IJ0_639

  8. Mair-Jenkins, J., Saavedra-Campos, M., Baillie, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2005;211: 80-90.

  9. Zhao, G., Ni, B., Jiang, H, et al. Inhibition of Severe Acute Respiratory Syndrome-Associated Coronavirus Infection by Equine Neutralizing Antibody in Golden Syrian Hamsters. Viral Immunology. 2007;20:197-205.

  10. Luo, D., Ni, B., Zhao, G., et al. Protection from Infection with Severe Acute Respiratory Syndrome Coronavirus in a Chinese Hamster Model by Equine Neutralizing F(ab_)2. Viral Immunology. 2007;20:495-502.

  11. Wang, C., Li, W., Drabek, D., et al. A human monoclonal antibody blocking SARS-CoV-2 infection. BioRxiv 2020 Epub ahead of print doi.org/10.1101/2020.03.11.987958

  12. Focosi, D., Anderson, A.O., Tang J.W, Tuccori M.. Convalescent plasma therapy for COVID-19: State of the Art. Preprints 2020. Epub ahead of print doi:10.20944/preprints202004.0097.v1

  13. AminJafaria, A., Ghasemib, S. The possible of immunotherapy for COVID-19: A systematic review. Int Immunopharmacol 2020 Epub ahead of print doi.org/10.1016/j.intimp.2020.106455

  14. Iwasaki, A., Yang. Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol 2020. Epub ahead of print doi.org/10.1038/s41577-020-0321-6

  15. Gutiérrez, J.M. 2018. La atención al problema de los envenenamientos por mordeduras de serpientes en Costa Rica: un proyecto nacional con proyección global. En: Gutiérrez, J.M. Reflexiones desde la academia. Universidad, ciencia y sociedad. Editorial Arlekín, San José, pp. 345-385.

  16. Segura, A., Herrera, M., Villalta, M., et al, Assessment of snake antivenom purity by comparing physicochemical and immunochemical methods. Biologicals 2012;41:93–97.

  17. León, G., Vargas, M., Segura, A., et al.. Current technology for the industrial manufacture of snake antivenoms. Toxicon 2018;151:63-73.

  18. Ahmed, S.F., Quadeer, A.A., McKay, M.R. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV- 2) Based on SARS-CoV Immunological Studies. Viruses 2020;12:254.

  19. Wrapp, D., Wang, N., Corbett, K.S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263.

  20. Tilocca, B., Soggiu, A., Sanguinetti, M., et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect 2020. Epub ahead of print doi.org/10.1016/j.micinf.2020.04.002




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Med Cos Cen. 2020;86