medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

Rev Cubana Plant Med 2020; 25 (4)

Effect of essential oils of Cymbopogon citratus (DC.) Stapf (lemon grass) and Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson (bushy matgrass) on Xanthomonas axonopodis and Ralstonia sp.

Acero GJ, Guzmán HTJ, Sánchez LLC, Sánchez MRM, Cruz CGN, Delgado ÁWA, Gil AE
Full text How to cite this article

Language: Spanish
References: 14
Page:
PDF size: 203.23 Kb.


Key words:

essential oils, C. citratus, L. alba, Xanthomonas axonopodis; Ralstonia sp., growth inhibition, geranial, limonene.

ABSTRACT

Introduction: The essential oils of Cymbopogon citratus (DC.) Stapf (lemon grass) and Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson (bushy matgrass) have shown to inhibit the growth of various microorganisms, among them phytopathogenic bacteria causing great damage to economically important crops.
Objective: Evaluate the effect of essential oils of C. citratus and Lippia alba on the phytopathogenic bacteria Xanthomonas axonopodis and Ralstonia sp.
Methods: The plants C. citratus (DC.) and L. alba were obtained from Samper Mendoza collection center in Bogotá, Colombia. The essential oils were extracted from the leaves by steam entrainment. Yield was estimated by gravimetry and relative composition by gas chromatography/mass spectrometry. Determination was made of the density and refractive index. The growth curves for the bacteria X. axonopodis and Ralstonia sp. were based on estimation of the optical densities on the Bioscreen C at 25ºC for 84 hours versus the two essential oils at a concentration of 28 mg/ml.
Results: The yields obtained were 0.13% for C. citratus and 0.62% for L. alba. The most abundant compounds were geranial in lemon grass (41.88%) and limonene in bushy matgrass (49.91%). The growth curves show significant differences in the effect of each oil on the bacteria evaluated, with L. alba as the one displaying the greatest growth inhibition.
Conclusions: According to the data obtained by the study, the compounds in the essential oils may be combined in different ways to produce biopesticides or antimicrobials against the microorganisms evaluated herein or others that cause damage to the agricultural sector, thus reducing the use of synthetic pesticides.


REFERENCES

  1. Durso LM, Cook KL. One Health and Antibiotic Resistance in Agroecosystems. Eco Health. 2019 [acceso: 01/03/2020];16(3):414-9. Disponible en: http://link.springer.com/10.1007/s10393-018-1324-7

  2. Elguea-Culebras G, Sánchez-Vioque R, Berruga MI, Herraiz-Peñalver D, González-Coloma A, Andrés MF, et al. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × intermedia var. SUPER, and Santolina chamaecyparissus. Chem Biodiversity. 2018;15(1):e1700313. DOI: http://doi.wiley.com/10.1002/cbdv.201700313

  3. Martínez DHF. Cadena de plantas aromáticas, medicinales, condimentarias y afines. PECTIA. 2016 [acceso: 13/03/05/2021];48:11717. Disponible en: http://rgdoi.net/10.13140/RG.2.2.16222.33601

  4. de Matos SP, Teixeira HF, de Lima ÁAN, Veiga-Junior VF, Koester LS. Essential Oils and Isolated Terpenes in Nanosystems Designed for Topical Administration: A Review. Biomolecules. 2019 [acceso: 12/05/2021];9(4):138. Disponible en: https://www.mdpi.com/2218-273X/9/4/138

  5. AOAC. Official Methods of Analysis. 15ta. ed. Washington DC, USA: AOAC Inc; 1990. Vol. 1.

  6. Adams R. Identification of essential oils components by Gas Chromatography/mass spectrometry. 4th ed. Illinois, USA: Allured Pub Corp; 2007. p. 804.

  7. Bomma M, Okafor F, Mentreddy SR, Nyochembeng L, Rangari VK, Khan S. The chemical composition, characterization, and combination effect of Ocimum campechianum leaf essential oils and bio-produced silver nanoparticles against Listeria monocytogenes and Escherichia coli. Researchgate. 2020 [acceso: 11/07/2021];10(4):518-26. Disponible en: https://www.researchgate.net/profile/Manjula-Bomma- 2/publication/343084844.pdf

  8. Di Rienzo J, Macchiavelli R, Casanoves F. Modelos Lineales Mixtos. Aplicaciones en InfoStat. Córdoba, Argentina: Universidad Nacional de Córdoba; 2012. p. 254.

  9. Pérez Cordero AF, Chamorro Anaya LM, Vitola Romero DC, Hernández Gómez JM. Actividad antifúngica de Cymbopogon citratus contra Colletotrichum gloeosporioides. Mesoam Agron. 2017 [acceso: 22/08/2021];28(2):465. Disponible en: https://revistas.ucr.ac.cr/index.php/agromeso/article/view/23647

  10. Tofiño Rivera A, Ortega Cuadros M, Galvis Pareja D, Jiménez Rios H, Merini LJ, Martínez Pabón MC. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. Journal of Ethnopharmacology. 2016 [acceso: 21/03/2020];194:749-54. Disponible en: http://www.sciencedirect.com/science/article/pii/S0378874116313289

  11. Muñoz Acevedo A, González M, Rodríguez J, De Moya Y. New Chemovariety of Lippia alba from Colombia: Compositional Analysis of the Volatile Secondary Metabolites and Some in vitro Biological Activities of the Essential Oil From Plant Leaves. Natural Product Communications. 2019 [acceso: 04/04/2020];1(9):1-7. Disponible en: https://journals.sagepub.com/doi/full/10.1177/1934578X19862905

  12. Ortega Cuadros M, Castañeda CG, Amarís GC, Tofiño Rivera AP. Essential oils biological activity of the shrub Lippia alba (Verbenaceae). Rev Biol Trop. 2020 [acceso: 01/08/2021];68(1):3044-59. Disponible en: https://www.scielo.sa.cr/pdf/rbt/v68n1/0034-7744-rbt-68-01-344.pdf

  13. Kang L. Overview: biotic signalling for smart pest management. Phil Trans R Soc B. 2019 [acceso: 01/03/2020];374(1767):20180306. Disponible en: https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0306

  14. Mohamed AA, Behiry SI, Younes HA, Ashmawy NA, Salem MZM, Márquez Molina O, et al. Antibacterial activity of three essential oils and some monoterpenes against Ralstonia solanacearum phylotype II isolated from potato. Microbial Pathogenesis. 2019 [acceso: 03/03/2020];135:103604. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0882401019305406




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2020;25