medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Case study: Evaluation and effect of feed with oxytetracycline industrially prepared and with a farm-based procedure on the development of Penaeus vannamei shrimp and its accumulation in muscle and hepatopancreas

Gámez-Bayardo S, Espinosa-Plascencia A, Jiménez-Edeza M, Pérez-Álvarez A, García-Galaz A, Bermúdez-Almada MC
Full text How to cite this article

Language: Spanish
References: 45
Page:
PDF size: 331.11 Kb.


Key words:

oxytetracycline, Penaeus vannamei, accumulation, biological parameters.

ABSTRACT

This research consisted of comparing two methods of adding oxytetracycline (OTC) in shrimp feed, as well as its development and its accumulation in muscle and hepatopancreas from Penaeus vannamei. A bioassay was carried out for 30 days using 180 juvenile shrimp testing two formulations to feed the organisms (OTC-1 and OTC-2). The formulations medicated were administered 14 days, and subsequently they were fed with a diet without antibiotic for 16 more days and water quality was determinate by physicochemical data. In shrimps the following was evaluated: Biological and physiological parameters, accumulation (Cmáx) of OTC and elimination time in muscle and hepatopancreas were determined by high performance liquid chromatography (HPLC). The development of organisms showed a survival of 99.72% for OTC-1 and 100% for OTC-2. The Cmáx of OTC in muscle for the OTC-1 group was 16.09 ± 1.80 µgg-1 and the OTC-2 group was 6.62 ± 0.87 µgg-1; in the hepatopancreas it was 105.85 ± 17.56 with (OTC-1) and 79.16 ± 15.61 µgg-1 with (OTC-2) finding an association of Cmáx of OTC by the method of addition (p ≤ 0.05). The medicated shrimp feed through an industrial process (OTC-1) and the addition on the farm (OTC-2) require greater quality control to ensure the desired concentration of the antibiotic, before its administration in shrimp cultures.


REFERENCES

  1. Achupallas, J. M., Zhou, Y. & Davis, D. A., (2016). Pond production of Pacific white shrimp, Litopenaeus vannamei, fed grain distillers dried yeast. Aquaculture Nutrition, 22, 1222-1229. https://doi.org/10.1111/ anu.12359

  2. Achupallas, J. (2000). Tecnología de alimentos para camarón. En: Civera-Cerecedo, R., Pérez-Estada, C. J., Ricque- Marie, D. y Cruz-Suárez, L. E. (Eds.) Avances en Nutrición Acuícola IV. Memorias del IV Simposium Internacional de Nutrición Acuícola. Noviembre 15-18,1998. La Paz, B.C.S., México. Disponible en: https://www.uanl.mx/ utilerias/nutricion_acuicola/IV/archivos/31achup.pdf

  3. Apun-Molina, J. P., Santamaría-Miranda, A., Luna-González, A., Ibarra-Gámez, J. C., Medina-Alcantar, V. & Racotta, I. (2015). Growth and metabolic responses of whiteleg shrimp Litopenaeus vannamei and Nile tilapia Oreochromis niloticus in polyculture fed with potential probiotic microorganisms on different schedules. Latin American Journal Aquatic Research, 43(3), 435-445. http://doi. org/10.3856/vol43-issue3-fulltext-5

  4. Arnold, J. S., Coman, F. E., Jackson, C. J. & Groves, S. A. (2009). High-intensity, zero water exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture, 293(1-2), 43- 48. https://doi.org/10.1016/j.aquaculture.2009.03.049

  5. Bermúdez-Almada, M. C., Pérez-Tello, M. G., Valenzuela- Quintanar, A. I. & Vázquez-Moreno, L. (1999). Oxytetracycline residues in cultured white shrimp tissue by HPLC and a microbial receptor assay. Journal of Food Science, 64(4), 638-940. https://doi. org/10.1111/j.1365-2621.1999.tb15100.x

  6. Bermúdez-Almada, M. C., Espinosa-Plascencia, A., Santiago- Hernández, M. L., Barajas-Borgo, C. J. & Acedo-Félix, E. (2014). Comportamiento de oxitetraciclina en camarón de cultivo Litopenaeus vannamei y la sensibilidad a tres antibióticos de bacterias de Vibrio aisladas de los organismos. Revista Biotecnia, 16(3), 29-37. https://doi. org/10.18633/bt.v16i3.138

  7. Boyd, C. E., Treece, G., Engle, R. C., Valderrama, D., Lightner, V. D., Pantoja, C. R., Fox, J., Sánchez, D., Otwell, S., Garrido, L., Garrido, V. & Benner, R. (2000). Consideraciones sobre la calidad del agua y del suelo en cultivos de camarón. En: Haws M. C. y C. E. Boyd (ed). Métodos para mejorar la camaronicultura en Centroamérica. p 1-30. Disponible en: http://repositorio. uca.edu.ni/2279/1/2001_m%C3%A9todo_para_mejorar_ la_camaronicultura.pdf

  8. Burbano-Gallardo, E., Imués-Figuera, M. A., González- Legarda, E. A., Brito, L. O., Olivera-Galvez, A. & Vinatea-Arana, L. A. (2015). Supervivencia de poslarvas de Litopenaeus vannamei sometidas a la prueba de estrés osmótico y su relación con el estado de muda. Revista de Biología Marina y Oceanografía, 50(2), 323-329. http:// dx.doi.org/10.4067/S0718-19572015000300010

  9. Carvalho, R. A. P. L. F., Haruo-Ota, R., Kadry, V. O., Tacon, A. G. J. & Lemos, D. (2016). Apparent digestibility of protein, energy, and amino acids of six protein sources included at three levels in diets for juvenile white shrimp Litopenaeus vannamei reared in high performance conditions. Aquaculture, 465, 223-234. https://doi.org/10.1016/j. aquaculture.2016.09.010

  10. Cuartas, E. I., Díaz, A. C. & Petriella, A. M. (2002). Estudio morfológico e histológico del hepatopáncreas del langostino Pleoticus muelleri (Bate) (Crustacea, Penaeoidea). Revista de Investigación y Desarrollo Pesquero, 15, 5-13. Disponible en: http://hdl.handle.net/1834/1702

  11. De la Mora, G., Villarreal-Delgado, E., Arredondo-Figueroa, J., Ponce-Palafox, J. & Barriga-Sosa, I. (2003). Evaluación de algunos parámetros de calidad del agua en un sistema cerrado de recirculación para la acuicultura, sometido a diferentes cargas de biomasa de peces. Hidrobiológica, 13(4), 247-253. http://www.scielo.org.mx/pdf/hbio/v13n4/ v13n4a1.pdf

  12. Espinosa-Plascencia, A., López-Arvayo, P. J., González- Carrillo, H. H. & Bermúdez-Almada, M. C. (2012). Efecto del congelado y cocinado sobre residuos de oxitetraciclina en camarón de cultivo. Revista Biotecnia, 8(3), 12-21. https://doi.org/10.18633/bt.v13i3.94

  13. Faillace, B. J. F., Vergara, R. & Suárez, A. (2016). Evaluación de una fórmula alimenticia para camarón de cultivo (L. vannamei) con inclusión de proteína vegetal a base de harina de soya. Revista AquaTIC, 44, 12-29. Disponible en: http://www.revistaaquatic.com/ojs/index.php/aquatic/ article/view/271/254

  14. Fóes, G., Krummenauer, D., Lara, G., Poersh, L. & Wasieslesky, W. (2016). Long term storage and the compensatory growth of white shrimp Litopenaeus vannamei in aquaculture ponds. Latin American Journal of Aquatic Research, 44, 588-594.

  15. Food & Drug Administration (FDA) (1994). Control de Calidad de insumos y dietas acuícolas. Capítulo 15. Nutrición y control de calidad, un enfoque integral. Disponible en: http://www.fao.org/3/ab482s/AB482S00.htm#TOC

  16. Fox, J., Treece, G. D. & Sánchez, D. (2001). Nutrición y manejo del alimento. Métodos para mejorar la camaronicultura en Centroamérica. M.C. En: Haws, M. C. y Boyd, C. E. (eds). Pp. 65-90. Managua, Nicaragua. Disponible en: http://www.cesasin.com.mx/CentroAmerica/4%20 Nutrici%C3%B3n.pdf

  17. Franco, M. A., Blancheton, J. P., Deviller, G., Charrier, A. & Le, J. Y. (2004). Effect of fish size and hydraulic regime on particulate organic matter dynamics in a recirculation aquaculture system: elemental carbon and nitrogen approach. Aquaculture, 239(1-4), 179-198. https://doi. org/10.1016/j.aquaculture.2004.05.040

  18. Gómez-Jiménez, S., Espinosa-Plascencia, A., Valenzuela-Villa, F. & Bermúdez-Almada, M. C. (2008). Oxitetracycline (OTC) accumulation and elimination in hemolymph muscle and hepatopancreas of white shrimp Litopenaeus vannamei following an OTC-feed therapeutic treatment. Aquaculture, 274, 24-29. https://doi.org/10.1016/j. aquaculture.2007.11.017

  19. Gong, H., Jiang, D. H., Lawrence, A., González-Félix, M. & Pérez-Velázquez, M. (2004). Nuevos avances en el estudio de fosfolípidos nutricionales para camarón. Avances en nutrición acuícola VII. Memorias del VII Simposium Internacional de Nutrición Acuícola. 16-19. Nov. Hermosillo, Sonora, México. pp 329-343. Disponible en: https://www.uanl.mx/utilerias/nutricion_acuicola/VII/ archivos/18Gong&Lawrence.pdf

  20. González-Carrillo, H. H., Espinosa-Plascencia, A. & Bermúdez- Almada, M. C. (2010). Desarrollo de una metodología para el control de calidad en la elaboración de alimento con enrofloxacina para camarón de cultivo. VII Congreso del Noroeste y III Nacional de Ciencias Alimentarias y Biotecnología. 10 al 13 de noviembre de 2010. Hermosillo, Sonora. México. pp 1415-1425.

  21. Gutiérrez-Dagnino, A., Luna-González, A., Fierro-Coronado, J. A., Álvarez-Ruiz, P., Flores-Miranda, M. C, Miranda- Saucedo, S., Medina-Beltrán, V. & Escamilla-Montes, R. (2015). Efecto de la inulina y del ácido fúlvico en la supervivencia, crecimiento, sistema inmune y prevalencia de WSSV en Litopenaeus vannamei. Latin American Journal of Aquaculture Research, 43(5), 912-921. https:// doi.org/10.3856/vol43-issue5-fulltext-11

  22. Houglum, J., Larson, R. & Knutson, A. (1997). Assay of chlortetracycline in animal feeds by liquid chromatography with fluorescence detection. Journal of Association of Official Analytical Chemistry International, 80(5), 961- 965. https://doi.org/10.1093/jaoac/80.5.961

  23. Lara-Espinoza, C. L., Espinosa-Plascencia, A., Rivera- Domínguez, M., Astorga-Cienfuegos, K. R. & Acedo-Félix, E. (2015). Desarrollo de camarón Litopenaeus vannamei en un sistema de cultivo intensivo con biofloc y nulo recambio de agua. Revista AquaTIC., 43, 1-13. http://www. revistaaquatic.com/ojs/index.php/aquatic/article/view/263

  24. Li, E., Chen, C., Zeng, N., Yu, Z., Xiong, X. & Chen-Quin, J. G. (2008). Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocianin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei at various salinities. Aquaculture, 274(1), 80-86. https://doi.org/10.1016/j.aquaculture.2007.11.001

  25. Li, E., Chen, L., Zheng, C., Chen, X., Yu, N., Lai, Q. & Quin, J. G. (2007). Growth, body composition, respiration and ambient ammonia nitrogen tolerance of juvenile white shrimp Litopenaeus vannamei, at different salinities. Aquaculture, 265(1-4), 385-390. https://doi.org/10.1016/j. aquaculture.2007.02.018

  26. Lightner, D.V. (1996). A Handbook of shrimp pathology and diagnostic procedures of diseases of cultured penaeid shrimp. World Aquaculture Society, pp 304.

  27. Limsuwan, C. (2005). Cultivo intensivo del camarón blanco: Resumen de visitas y conferencias a camaroneras de Perú. Boletín Nocovita del camarón del mar, Ene-Mar, pp 1-6.

  28. Lunestad, B. T., Hannisdal, R. & Samuelsen, O. (2015). Safety of medical feed additives in the food chain. Feed and Feeding Practices in Aquaculture. Disponible en: http:// dx.doi.org/10.1016/B978-0-08-100506-4.00010-6.

  29. Ma, R., Wang, Y., Zou, X., Fu, G., Li, C., Fan, P. & Fang, W. (2019). Pharmacokinetics of oxytetracycline in Pacific white shrimp, Penaeus vannamei, after oral administration of a single-dose and multiple-doses. Aquaculture, 512, 734348. https://doi.org/10.1016/j.aquaculture.2019.734348

  30. Newman, S. G. (2015). Vibrio control in shrimp farming. Global Aquaculture Advocate. 18, 24-25. Disponible en: https://www.aquaculturealliance.org/advocate/vibriocontrol- in-shrimp-farming-part-1/

  31. O’Keefe, T. & Campabadal, C. A. (2015). Storage and handling of feeds for fish and shrimp. Feed and Feeding Practices in Aquaculture. Disponible en: http://dx.doi.org/10.1016/ B978-0-08-100506-4.00012-X. p 299-313.

  32. Roque, A., Molina-Aja, A., Bolan-Mejia, C. & Gomez-Gil, B. (2001). In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. International Journal of Antimicrobial Agents, 17(5), 383-387. https://doi.org/10.1016/s0924- 8579(01)00308-9

  33. Samuelsen, O. B., Lunestad, B. T., Hannisdal, R., Bannister, R., Olsen, S., Tjensvoll, T., Farestveit, E. & Ervik, A. (2015). Distribution and persistence of the anti sea-lice drug teflubenzuron in wild fauna and sediments around a salmon farm, following a standard treatment. Science Total Environmental, 508, 115-121. https://doi.org/10.1016/j. scitotenv.2014.11.082

  34. Santiago-Hernández, M. L. (2009). Acumulación de Oxitetraciclina (OTC) en camarón de cultivo Litopenaeus vannamei y pruebas de sensibilidad en bacterias tipo Vibrio aisladas de un sistema de cultivo. Tesis de Maestría. Centro de Investigación en Alimentación y Desarrollo, A. C. Hermosillo, Sonora, México. pp. 45-50.

  35. Soto-Rodríguez, S. A., Gómez-Gil, B., Roque, A. & Lozano, R. (2008). MIC’S de antibióticos de Vibrio spp aislados de L. vannamei cultivado en México. Panorama Acuícola Magazine, Nov-Dic. pp. 53-56.

  36. Tapia-Salazar, M., García-Pérez, O. D., Velásquez-Soto, R. A., Nieto-López, M. G., Villarreal-Cavazos, D., Ricque- Marie, D. & Cruz-Suárez, L. E. (2012). Growth, feed intake, survival, and histological response of White shrimp Litopenaeus vannamei fed diets containing graings naturally contaminated with aflatoxin. Ciencias Marinas, 38(3), 491-504. Disponible en: https://www.redalyc.org/ articulo.oa?id=48024401002

  37. Torres, C. & Zaragoza, M. (2002). Antibióticos como promotores de crecimiento en animales ¿Vamos por buen camino? Gaceta Sanitaria, 16(2), 09-112. https://doi. org/10.1016/S0213-9111(02)71640-3

  38. Uno, K., Aoki, T., Kleechaya, W., Tanasomwang, V. & Ruangpan, L. (2006). Pharmacokinetics of oxytetracycline in black tiger shrimp, Penaeus monodon, and the effect of cooking on the residues. Aquaculture, 254, 24-31. https:// doi.org/10.1016/j.aquaculture.2005.10.031

  39. USDA, (1987). Food Safety and Inspection Service. Determining Acceptability of Methods for Regulatory Purpose (2.2.3). Chemistry Laboratory Quality Assurence Handbook. Vol II. United States. Department of Agriculture, Beltsville, MD. USA.

  40. Valverde-Moya, J. A. & Alfaro-Montoya, J. (2015). Crecimiento compensatorio y producción en las fases de precría, preengorde y engorde comercial del camarón blanco, Litopenaeus vannamei, en Costa Rica. Revista Ciencias Marinas y Costeras, 7, 99-115. https://doi.org/10.15359/ REVMAR.7.7

  41. Venkateswara-Rao, A. (2009). Vibriosis en la acuicultura del camarón. India. Disponible en: http://www.panoramaacuicola.com/articulos_y_ entrevistas/2009/03/23/vibriosis_en_la_acuicultura_del_ camaron.html

  42. Vorbach, B. S., Chandesana, H., Derendorf, H. & Yanong, R. P. E. (2019). Pharmacokinetics of Oxytetracycline in the Giant Danio (Devario aequipinnatus) following bath immersion. Aquaculture, 498, 12-16. https://doi. org/10.1016/j.aquaculture.2018.08.027

  43. Xu, W. J., Morris, T. C. & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169-175. https://doi. org/10.1016/j.aquaculture.2015.11.021

  44. Yohenia, C. J. & Bolaños, N. M. B. (2013). Efecto de dos tipos de dietas: Comercial y experimental cobre el crecimiento de camarones Litopenaeus vannamei en etapa de postlarvas. Universidad Nacional Autónoma de Nicaragua. Facultad de Ciencia y Tecnología. pp. 49-52. http://riul.unanleon. edu.ni:8080/jspui/bitstream/123456789/3107/1/225254. pdf

  45. Zhou, Y., Thirumurugan, R., Wang, Q., Lee, C. M. & Davis, D. A. (2016). Use of dry hydrolysate from squid and scallop product supplement in plan based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture, 465, 53.59. https://doi.org/10.1016/j.aquaculture.2016.08.028




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24