medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Endophytes from the Cactaceae family and its application

Rodríguez-Mendoza CA, Hernández LR, Pérez-Armendáriz B, Juárez ZN
Full text How to cite this article

Language: Spanish
References: 96
Page:
PDF size: 334.48 Kb.


Key words:

microorganisms, cacti, potential bioactivity.

ABSTRACT

Species of the Cactaceae family inhabit areas with high temperatures, water scarcity, and nutrient-deficient soils. This is a result of complex processes such as physiological and physical adaptations, in addition to coevolution with endophytic microorganisms, which are inhabit plant tissues and can have relevant importance for the plant such as their establishment in rocky strata, the atmospheric nitrogen and phosphorus fixation by bacteria, or the antimicrobial action by fungi. Bioprospecting studies on endophytes of cacti are still scarce, so this work compiles the scientific literature on endophytic bacteria and fungi of cacti available in the databases Dialnet, DOAJ, EBSCO, Google académico, iSEEK, Redalyc, REDIB, Science Direct, SciFinder, SciELO, Springer, Web of Science and Wiley Online Library. The review yielded 22 papers published in 33 years; only 36% of them analyzed their bioactivity. The use of endophytes for biotechnological transfer is highlighted, mainly for social benefit (agricultural and medical purposes), as well as conservation.


REFERENCES

  1. Aguirre-Garrido, J. F., Montiel-Lugo, D., Hernández-Rodríguez, C., Torres- Cortes, G., Millán, V., Toro, N., Martínez-Abarca, F. & Ramírez-Saad, H. C. (2012). Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie Van Leeuwenhoek, 101, 891–904. https://doi.org/10.1007/ s10482-012-9705-3

  2. Akinsemolu, A. A. (2018). The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182, 139–155. https://doi. org/10.1016/j.jclepro.2018.02.081

  3. Ayala, M. D. C. N. A., Castillo, F. D. H., Alcalá, E. I. L., Pérez, A. S. L., Canché, C. N. A. & García, J. R. (2020). Efecto biológico de nanopartículas cargadas con ácido indolacético microbiano en parámetros morfométricos de tomate. Revista Mexicana de Ciencias Agrícolas, 11(3), 507-517. https:// doi.org/10.29312/remexca.v11i3.1919

  4. Barrales-Cureño, H. J. & De la Rosa M., R. (2014). Uso de hongos endófitos en la producción del fármaco anti-cáncer Taxol. Biotecnología Vegetal, 14(1), 3-13. https://revista. ibp.co.cu/index.php/BV/article/view/23/423

  5. Bashan, Y., Li, C. Y., Lebsky, V. K., Moreno, M. & De Bashan, L. E. (2002). Primary colonization of volcanic rocks by plants in arid Baja California, Mexico. Plant Biology, 4(3), 392-402. https://doi.org/10.1055/s-2002-32337

  6. Begoude, B. A. D., Slippers, B., Wingfield, M. J. & Roux, J. (2011). The pathogenic potential of endophytic Botryosphaeriaceous fungi on Terminalia species in Cameroon. Forest Pathology, 41(4), 281-292. https://doi. org/10.1111/j.1439-0329.2010.00671.x

  7. Bellenger, J. P., Darnajoux, R., Zhang, X. & Kraepiel, A. M. L. (2020). Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review. Biogeochemistry, 149(1), 53-73. https://doi. org/10.1007/s10533-020-00666-7

  8. Bertetti, D., Ortu, G., Gullino, M. & Garibaldi, A. (2017). Identification of Fusarium oxysporum f. sp. opuntiarumon new hosts of the Cactaceae and Euphorbiaceae families. Journal of Plant Pathology, 99(2), 347-354. http:// www.jstor.org/stable/44686779

  9. Bettin, F., Cousseau, F., Martins, K., Boff, N. A., Zaccaria, S., da Silveira, M. M. & Dillon, A. J. P. (2019). Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. Journal of Environmental Management, 236, 581-590. https://doi.org/10.1016/j.jenvman.2019.02.011

  10. Bezerra, J. D. P., Santos, M. G., Barbosa, R. N., Svedese, V. M., Lima, D. M., Fernandes, M. J. S., Gomes, B. S., Paiva, L. M. & Souza-Motta, C. M. (2013). Fungal endophytes from cactus Cereus jamacaru in brazilian tropical dry forest: a first study. Symbiosis, 60(2), 53-63. https://doi.org/10.1007/ s13199-013-0243-1

  11. Bezerra, J. D. P., de Azevedo, J. L. & Souza-Motta, C. M. (2017). Why study endophytic fungal community associated with cacti species? En: de Azevedo J., Quecine M. (Eds.) Diversity and Benefits of Microorganisms from the Tropics (pp. 21-35). Cham: Springer. https://doi.org/10.1007/978- 3-319-55804-2_2

  12. Bulla, L. M. C., Polonio, J. C., de Brito Portela-Castro, A. L., Kava, V., Azevedo, J. L. & Pamphile, J. A. (2017). Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environmental Monitoring and Assessment, 189(2), 88. https://doi. org/10.1007/s10661-017-5790-0

  13. Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Glockner, F. O., Amann, R., Eickhorst, T. & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 91-95. DOI: 10.1038/nature11336

  14. Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G., López-Bucio, J. & Partida-Martínez, L. P. (2019). Smells from the desert: microbial volatiles that affect plant growth and development of native and non-native plant species. Plant, Cell & Environment, 42(4), 1368-1380. https://doi.org/10.1111/pce.13476

  15. Camarena-Pozos, D. A., Flores-Núñez, V. M., López, M. G. & Partida-Martínez, L. P. (2021). Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environmental Microbiology, 23(4), 2215-2229. https:// doi.org/10.1111/1462-2920.15395

  16. Cardona, M., Osorio, J. & Quintero, J. (2009). Degradación de colorantes industriales con hongos ligninolíticos. Revista Facultad de Ingeniería Universidad de Antioquía, (48), 27-37. http://www.scielo.org.co/scielo.php?script=sci_ arttext&pid=S0120-62302009000200003&lng=en&tlng=es.

  17. Chávez-Ambriz, L. A., Hernández-Morales, A., Cabrera- Luna, J. A., Luna-Martínez, L. & Pacheco-Aguilar, J. R. (2016). Aislados de Bacillus provenientes de la rizosfera de cactus incrementan la germinación y la floración en Mammillaria spp. (Cactaceae). Revista Argentina de Microbiología, 48(4), 333-341. https://doi.org/10.1016/j. ram.2016.09.001

  18. Challenger, A. & Soberón, J. (2008). Los ecosistemas terrestres, en Capital natural de México, Vol. I: Conocimiento actual de la biodiversidad. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad CONABIO, México, pp. 87-108. https://bioteca.biodiversidad.gob.mx/janium/ Documentos/13309.pdf

  19. Clay, K. (1989). Clavicipitaceous endophytes of grasses, their potential as biocontrol agents. Mycological Research, 92(1), 1-12. https://doi.org/10.1016/S0953-7562(89)80088-7

  20. CONABIO (comp.) (2021). Catálogo de autoridades taxonómicas de especies de flora y fauna con distribución en México. Familia Cactaceae. Base de datos del Sistema Nacional de Información sobre Biodiversidad SNIBCONABIO, México.

  21. Conn, V. M. & Franco, C. M. (2004). Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied and Environmental Microbiology, 70(3), 1787-1794. 10.1128/aem.70.3.1787-1794.2004

  22. Cui, M. & Nobel, P. S. (1992). Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytologist, 122(4), 643-649. https://doi.org/10.1111/j.1469-8137.1992.tb00092.x

  23. Davis, E. C. & Shaw, A. J. (2008). Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. American Journal of Botany, 95(8), 914-924. https://doi.org/10.3732/ajb.2006463

  24. De Bashan, L. E., Hernandez, J. P. & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Applied Soil Ecology, 61, 171-189. https://doi. org/10.1016/j.apsoil.2011.09.003

  25. De Castro, C. P., N., Dos Santos, R. C., Cunha, M., D., Rodrigues, F., J., De Souza, F., E. M., Antinarelli, L. M. R., Soares, C., E., Ribeiro, A. & Scio, E. (2012). Cytotoxic and antioxidant activity of Pereskia aculeata Miller. Pharmacology OnLine, 3, 63-69. https://pharmacologyonline.silae.it/files/ archives/2012/vol3/PhOL_2012_3_A009_015_Nicolas.pdf

  26. Delaye, L., García-Guzmán, G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60(1), 125-135. https://doi.org/10.1007/s13225- 013-0240-y

  27. Devi, P. A. (2019). Detection of antibiotic genes from endophytic Pseudomonas fluorescens of cotton. BIOINFOLET-A Quarterly Journal of Life Sciences, 16(3), 146- 1 5 3 . http://www.indian journals. com/ijor. aspx?target=ijor:bil&volume=16&issue=3&article=008

  28. Dini-Andreote, F. (2020). Endophytes: the second layer of plant defense. Trends in Plant Science, 25(4), 319-322. DOI: 10.1016/j.tplants.2020.01.007

  29. Eke, P., Kumar, A., Sahu, K. P., Wakam, L. N., Sheoran, N., Ashajyothi, M., Patel, A. & Fekam, F. B. (2019). Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiological Research,228, 126302. https://doi.org/10.1016/j.micres.2019.126302

  30. Enebe, M. C. & Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied Microbiology and Biotechnology, 102(18), 7821. DOI: 10.1007/s00253- 018-9214-z

  31. Ferrer-Cervantes, M. E., Méndez-González, M. E., Quintana- Ascencio, P. F., Dorantes, A., Dzib, G. & Durán, R. (2012). Population dynamics of the cactus Mammillaria gaumeri: an integral projection model approach. Population Ecology, 54, 321–334. https://doi.org/10.1007/s10144- 012-0308-7

  32. Fitriani, A., Ihsan, F. & Hamdiyati, Y. (2015). Antibacteria activity of Shewanella and Pseudomonas as endophytic bacteria from the root of Ageratum conyzoides L. Asian Journal of Applied Sciences, 3(3), 415–420. https://www. ajouronline.com/index.php/AJAS/article/view/2719

  33. Flores, J. & Jurado, E. (2003). Are nurse protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14(6), 911- 916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x

  34. Flores-Núñez, V. M., Fonseca-García, C., Desgarennes, D., Eloe-Fadrosh, E., Woyke, T. & Partida-Martínez, L. P. (2020). Functional signatures of the epiphytic prokaryotic microbiome of agaves and cacti. Frontiers in Microbiology, 10, 3044. https://doi.org/10.3389/ fmicb.2019.03044

  35. Fonseca-García, C., Coleman-Derr, D., Garrido, E., Visel, A., Tringe, S. G. & Partida-Martínez, L. P. (2016). The cacti microbiome, interplay between habitat-filtering and hostspecificity. Frontiers in Microbiology, 7, 150. https://doi. org/10.3389/fmicb.2016.00150

  36. Fonseca-García, C., Desgarennes, D., Flores-Núñez, V. M. & Partida-Martínez, L. P. (2018). “Chapter 12-The microbiome of desert CAM plants: lessons from amplicon sequencing and metagenomics,” En: Nagarajan, M. (Ed.) Metagenomics. Cambridge, MA: Academic Press, 231–254. https://doi.org/10.1016/B978-0-08-102268-9.00012-4

  37. Godínez, H. (2017). Las plantas y los endófitos, cómo sobrevivir en las regiones áridas y semiáridas. Elementos, 105, 39-43. https://elementos.buap.mx/directus/storage/ uploads/00000000385.pdf

  38. Goldstein, A., Lester, T. & Brown, J. (2003). Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases. Biochimica et Biophysica Acta Proteins and Proteomics, 1647, 266–271. https://doi. org/10.1016/S1570-9639(03)00067-0

  39. He, J., Lange, J., Marinos, G., Bathia, J., Harris, D., Soluch, R., Vaibhvi, V., Dines, P., Hassani, M. A., Wagner, K., Zapien- Campos, R., Jaspers, C. & Sommer, F. (2020). Advancing our functional understanding of host–microbiota interactions: a need for new types of studies. BioEssays, 42, 1900211. https://doi.org/10.1002/bies.201900211

  40. Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Domingues Z., T., Gouvêa T., R., Andreote, F. D. & Soares de Melo, I. (2013). Screening of brazilian cacti rhizobacteria for plant growth promotion under drought.Microbiological Research, 168(4), 183-191. https://doi.org/10.1016/j.micres.2012.12.002

  41. Kim, J., Jho, K. H., Choi, Y. H. & Nam, S. Y. (2013). Chemopreventive effect of cactus (Opuntia humifusa) extracts, radical scavenging activity, pro-apoptosis, and anti-inflammatory effect in human colon (SW480) and breast cancer (MCF7) cells. Food & Function, 4(5), 681- 688. https://doi.org/10.1039/C3FO30287C

  42. Kobayashi, D. Y., Reedy, R. M., Bick, J. & Oudemans, P. V. (2002). Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 68(3), 1047–1054. https://doi.org/10.1128/AEM.68.3.1047- 1054.2002

  43. Kusari, S., Hertweck, C. & Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 19(7), 792-798. https:// doi.org/10.1016/j.chembiol.2012.06.004

  44. Leite, L. J. V., Weber, O. M., Correia, D., Soares, M. A. & Alves, S. J. (2015). Endophytic bacteria in cacti native to a brazilian semi-arid region. Plant and Soil, 389, 25-33. https://doi.org/10.1007/s11104-014-2344-x

  45. Li, J. H., Wang, E. T., Chen, W. F. & Chen, W. X. (2008). Genetic diversity and potential promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry, 40, 238-246. https://doi.org/10.1016/j. soilbio.2007.08.014

  46. Li, H. Y., Wei, D. Q., Shen, M. & Zhou, Z. P. (2012). Endophytes and their role in phytoremediation. Fungal Diversity, 54(1), 11-18. https://doi.org/10.1007/s13225- 012-0165-x

  47. Li, H., Parmar, S., Sharma, V. K. & White, J. F. (2019). Seed endophytes and their potential applications. En: Verma S., White, Jr. J. (Eds.) Seed Endophytes (pp. 35-54). Cham: Springer. https://doi.org/10.1007/978-3-030-10504-4_3

  48. Lima, J. V. L., Weber, O. B., Correia, D., Soares, M. A. & Senabio, J. A. (2015). Endophytic bacteria in cacti native to a Brazilian semi-arid region. Plant and Soil, 389(1-2), 25-33. https://doi.org/10.1007/s11104-014-2344-x

  49. López, B. R., Tinoco-Ojanguren, C., Bacilio, M., Mendoza, A. & Bashan, Y. (2012). Endophytic bacteria of the rockdwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environmental and Experimental Botany, 81, 26-36. https://doi.org/10.1016/j. envexpbot.2012.02.014

  50. Maldonado-Carmona, N., Vázquez-Hernández, M., Chávez, O. J. P., Rodríguez-Luna, S. D., Rodríguez, O. J., Sanchez, S. & Ceapă, C. D. (2019). Impact of omics in the detection and validation of potential anti-infective drugs.Current Opinion in Pharmacology, 48, 1-7. https://doi.org/10.1016/j. coph.2019.02.008

  51. Márquez, S. S., Bills, G. F., Herrero, N. & Zabalgogeazcoa, I. (2012). Non-systemic fungal endophytes of grasses. Fungal Ecology, 5(3), 289-297. https://doi.org/10.1016/j. funeco.2010.12.001

  52. Martínez-Klimova, E., Rodríguez-Peña, K. & Sánchez, S. (2017). Endophytes as sources of antibiotics. Biochemical Pharmacology, 134, 1-17. https://doi.org/10.1016/j. bcp.2016.10.010

  53. Mascarúa-Esparza, M. A., Villa-González, R. & Caballero- Mellado, J. (1988) Acetylene reduction and indoleacetic acid production by Azospirllum isolates from cactaceous plants. Plant Soil, 106, 91-95. https://doi.org/10.1007/ BF02371199

  54. Miller, C. M., Miller, R. V., Garton-Kenny, D., Redgrave, B., Sears, J., Condron, M. M., Teplow, D. B. & Strobel, G. A. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84(6), 937-44. https://doi.org/10.1046/j.1365-2672.1998.00415.x

  55. Muthezhilan, R., Vinoth, S., Gopi, K. & Jaffar Hussain, A. (2014). Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. International Journal of ChemTech Research, 6(9), 4154-4160. http:// sphinxsai.com/2014/RTBCE/2/(4154-4160)%20014.pdf

  56. Paredes-Mendoza, M. & Espinosa-Victoria, D. (2010). Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: una revisión crítica. Terra Latinoamericana, 28(1), 61-70. http://www.scielo.org.mx/scielo.php?script=sci_ arttext&pid=S0187-57792010000100007

  57. Pauca, A., Talavera, C., Villasante, F., Quispe, J. & Laura, M. (2018). Cactaceae del distrito de Atiquipa y del Área de Conservación Privada Lomas de Atiquipa: aspectos taxonómicos, ecológicos y de distribución. Arnaldoa,25(3), 829-856. http://www.scielo.org.pe/scielo.php?script=sci_ arttext&pid=S2413-32992018000300003

  58. Pereg, L., de-Bashan, L. E. & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant and soil, 399(1-2), 389-414. https://doi.org/10.1007/ s11104-015-2778-9

  59. Pereira, P., Ibáñez, F., Rosenblueth, M., Etcheverry, M. & Martínez-Romero, E. (2011). Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. International Scholarly Research Notices, 2011, 1-10. https://doi.org/10.5402/2011/938546

  60. Pereira, J., de Azevedo, J. & Souza-Motta, C. (2017). Why study endophytic fungal community associated with cacti species? En: de Azevedo, J. & Quecine, M. (Eds.), Diversity and benefits of microorganisms from the tropics (pp. 21- 35). Suiza: Springer International Publishing. https://doi. org/10.1007/978-3-319-55804-2_2

  61. Petrini, O. (1991). Fungal endophytes of tree leaves. p. 179- 197. En: J.H.Andrews y S.S. Hirano (Eds.). Microbial ecology of leaves. Springer Verlag, New York. https://doi. org/10.1007/978-1-4612-3168-4_9

  62. Pitiwittayakul, N. & Tanasupawat, S. (2020). Plant Growth- Promoting endophytic Bacteria and their potential benefits in Asian countries. En: Beneficial Microbes for Sustainable Agriculture and Environmental Management (pp. 81-114). Apple Academic Press.

  63. Porras-Alfaro, A. & Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual review of phytopathology, 49, 291-315. DOI: 10.1146/annurevphyto- 080508-081831

  64. Puente, M. E., Bashan, Y., Li, C. Y. & Lebsky, V. K. (2004 a). Microbial populations and activities in the rhizoplane of rock-weathering desert plants, I. Root colonization and weathering of igneous rocks. Plant Biology, 6, 629–642. https://doi.org/10.1055/s-2004-821100

  65. Puente, M. E., Li, C. Y. & Bashan, Y. (2004 b). Microbial populations and activities in the rhizoplane of rock weathering desert plants, II. Growth promotion of cactus seedling. Plant Biology, 6, 643–650. https://doi. org/10.1055/s-2004-821101

  66. Puente, M. E., Li, C. Y. & Bashan, Y. (2009). Rockdegrading endophytic bacteria in cacti. Environmental and Experimental Botany, 66, 389–401. https://doi. org/10.1016/j.envexpbot.2009.04.010

  67. Puri, A., Padda, K. P. & Chanway, C. P. (2017). Plant growth promotion by endophytic bacteria in nonnative crop hosts. En: Maheshwari, D. & Annapurna K. (eds.) Endophytes: crop productivity and protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi. org/10.1007/978-3-319-66544-3_2

  68. Ramos-Garza, J., Rodríguez-Tovar, A. V., Flores-Cotera, L. B., Rivera-Orduña, F. N., Vásquez-Murrieta, M. S., Ponce- Mendoza, A. & Wang, E. T. (2016). Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico. Annals of Microbiology, 66, 991-1002. https://doi.org/10.1007/s13213-015-1184-0

  69. Ratnaweera, P. B., de Silva, E. D., Williams, D. E. & Andersen, R. J. (2015). Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complementary and Alternative Medicine, 15, 220. https://doi.org/10.1186/ s12906-015-0722-4

  70. Restrepo-Correa, S. P., Pineda-Meneses, E. C. & Ríos- Osorio, L. A. (2017). Mecanismos de acción de hongos y bacterias empleados como biofertilizantes en suelos agrícolas: una revisión sistemática. Ciencia y Tecnología Agropecuaria, 18(2), 335-351. https://doi.org/10.21930/ rcta.vol18_num2_art:635

  71. Ríos-León, K., Fuertes-Ruiton, C., Arroyo, J. & Ruiz, J. (2017). Efecto quimioprotector del extracto alcaloideo de Melocactus bellavistensis (cactus globoso) sobre el cáncer de colon inducido con 1,2-dimetilhidrazina en ratas. Revista Peruana de Medicina Experimental y Salud Pública, 34 (1), 70-75. https://doi.org/10.17843/rpmesp.2017.341.2768

  72. Rodríguez-Ruíz, E. R., Poot-Poot, W. A., Rangel-Lucio, J. A., Vaquera-Huerta, H., González-Gaona, O. J. & Treviño- Carreón, J. (2018). Germinación in vitro de biznaga cabuchera. Revista Mexicana de Ciencias Agrícolas, 9(3), 691-699. http://www.scielo.org.mx/pdf/remexca/ v9n3/2007-0934-remexca-9-03-691.pdf

  73. Rosenblueth, M. & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. American Phytopathological Society,19, 827- 837. https://doi. org/10.1094/MPMI-19-0827

  74. Ruvalcaba-Ruiz, D., Rojas-Bravo, D. & Valencia-Botín, A. J. (2010). Propagación in vitro de Coryphantha retusa (Britton & Rose) un cactus endémico y amenazado. Tropical and Subtropical Agroecosystems, 12(1), 139-143. https://www. redalyc.org/articulo.oa?id=93913074015

  75. Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. J. (1998). Fungal endophytes: a continuum of interactions with host plants. Annual review of Ecology and Systematics, 29(1), 319-343. https://doi.org/10.1146/annurev.ecolsys.29.1.319

  76. Salazar, J. R., Martínez-Vazquez, M., Cespedes, C. L., Ramírez- Apan, T., Nieto-Camacho, A., Rodríguez-Silverio, J. & Flores-Murrieta, F. (2011). Anti-inflammatory and cytotoxic activities of chichipegenin, peniocerol, and macdougallin isolated from Myrtillocactusgeometrizans (Mart. Ex Pfeiff.) Con. Zeitschrift fur Naturforschung – Section C Journal of biosciences, 66(1-2), 24-30. DOI: 10.1515/znc-2011-1-204

  77. Samad, A., Antonielli, L., Sessitsch, A., Compant, S. & Trognitz, F. (2017). Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Scientific Reports. 7, 17336. https://doi.org/10.1038/s41598-017-16495-y

  78. Sánchez-Fernández, R. E., Sánchez-Ortiz, B. L., Sandoval- Espinosa, Y. K. M., Ulloa-Benítez, A., Armendáriz-Guillén, B., García-Méndez, M. C. & Macías-Rubalcava, M. L. (2013). Hongos endófitos, fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP Revista Especializada en Ciencias Químico- Biológicas, 16(2), 132-146. https://doi.org/10.1016/S1405- 888X(13)72084-9

  79. Schouten, A. (Ed.) (2019). Endophyte biotechnology: potential for agriculture and pharmacology. CABI, UK. https://doi. org/10.1079/9781786399427.0000

  80. Schulz, B., Römmert, A. K., Dammann, U., Aust, H. J. & Strack, D. (1999). The endophyte-host interaction: a balanced antagonism? Mycological Research, 103(10), 1275-1283. https://doi.org/10.1017/S0953756299008540

  81. Schulz, B. & Boyle, C. (2006). What are endophytes? En: Schulz, B. J. E., Boyle, C. J. C., Sieber, T. N. (Eds.). Microbial Root Endophytes. Soil Biology, vol. 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_1

  82. Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H. & Martinez-Romero, E. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21, 323-378. https://doi.org/10.1080/0735-260291044278

  83. Shahid, I., Rizwan, M., Baig, D. N., Saleem, R. S., Malik, K. A. & Mehnaz, S. (2017). Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis and P. aurantiaca strains isolated from cactus, cotton, and para grass. Journal of microbiology and biotechnology, 27(3), 480-491. https://doi.org/10.4014/ jmb.1601.01021

  84. Shedbalkar, U., Adki, V., Jadhav, J. & Bapat, V. (2010). Opuntia and other cacti, applications and biotechnological insights. Tropical Plant Biology, 3, 136-150. https://doi.org/10.1007/ s12042-010-9055-0

  85. Silva-Hughes, A. F., Wedge, D. E., Cantrell, C. L., Carvalho, C. R., Pan, Z., Moraes, R. M., Madoxx, V. L. & Rosa, L. H. (2015). Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiological Research, 175, 67-77. https://doi. org/10.1016/j.micres.2015.03.007

  86. Singh, R. K., Shrivastava, A., Yadav, A. & Srivastava, A. K. (2020). Endophytic bacteria as a source of bioactive compounds. En: Microbial Endophytes (pp. 175-188). Woodhead Publishing. https://doi.org/10.1016/B978-0- 12-818734-0.00008-5

  87. Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S. & Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9(8), 1011. https://doi.org/10.3390/ plants9081011

  88. Suryanarayanan, T. S., Wittlinger, S. K. & Faeth, S. H. (2005). Endophytic fungi associated with cacti in Arizona. Mycological Research, 109, 635–639. https://doi. org/10.1017/S0953756205002753

  89. Suryanarayanan, T. S. (2013). Endophyte research: going beyond isolation and metabolite documentation. Fungal ecology, 6(6), 561-568. https://doi.org/10.1016/j. funeco.2013.09.007

  90. Swarnalakshmi, K., Senthilkumar, M. & Ramakrishnan, B. (2016). Endophytic actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. En: Subramaniam G., Arumugam S., Rajendran V. (eds.) Plant growth promoting actinobacteria. Springer, Singapore. https://doi. org/10.1007/978-981-10-0707-1_8

  91. Tochhawng, L., Mishra, V. K., Passari, A. K. & Singh, B. P. (2019). Endophytic fungi: role in dye decolorization. En: Singh, B. (Ed.) Advances in endophytic fungal research: present status and future challenges. Springer, Cham. 1. https://doi.org/10.1007/978-3-030-03589-1_1

  92. Wan, J. H. C. & Wong, M. H. (2004). Effects of earthworm activity and P–solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science 167, 209–213. https://doi.org/10.1002/jpln.200321252

  93. Wang, E. T., Tan, Z. Y., Guo, X. W., Duran, R., Boll, G. & Martínez-Romero, E. (2006). Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Archives of Microbiology, 186, 251-259. https:// doi.org/10.1007/s00203-006-0141-5

  94. Yadav, A. N. (2021). Beneficial plant-microbe interactions for agricultural sustainability. Journal of Applied Biology & Biotechnology, 9, 1-4. DOI: 10.7324/JABB.2021.91ed

  95. Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C. & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied microbiology and biotechnology, 103(8), 3327-3340. https://doi.org/10.1007/s00253-019-09713-2

  96. Zareisedehizadeh, S., Tan, C. H. & Koh, H. L. (2014). A review of botanical characteristics, traditional usage, chemical components, pharmacological activities, and safety of Pereskia bleo (Kunth) DC. Evidence-Based Complementary and Alternative Medicine, 2014, 1-11. https://doi.org/10.1155/2014/326107




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24