medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Metabolic dysregulation and clinical consequences of fructose consumption

Alcántara-Ortiz MG, Campos-Serrano J, Ibarra-Sánchez A
Full text How to cite this article

Language: Spanish
References: 52
Page:
PDF size: 323.83 Kb.


Key words:

fructose, hyperuricemia, type 2 diabetes mellitus, lipogenesis, inflammation.

ABSTRACT

In order to meet modern societies’ demand for always-available instant or ready-to-eat foods, the food industry has increased its production rate without necessarily increasing food quality. High fructose corn syrup (HFCS), a product derived from cornstarch, is widely used in the manufacture of processed foods, and which excessive consumption is associated with an increase in the rate of obesity and metabolic disorders.
The metabolism of fructose, leads to the decrease of energy available in the organism. Simultaneously, metabolite production causes modifications in the cell signaling pathways inducing an increase in the quantity of lipids such as triglycerides and very low-density lipoprotein. High levels of these molecules promote conditions that lead to obesity and insulin resistance and that promote the development of type 2 diabetes mellitus, hyperuricemia and inflammation, which are the basis for the origin of cancer and neurological diseases. The present review focuses on the relationship between fructose and such maladies and on the possible action mechanisms.


REFERENCES

  1. Alten, B., Yesiltepe, M., Bayraktar, E., Tas, S. T., Gocmen, A. Y., Kursungoz, C., Martinez, A. & Sara, Y. (2018). High fructose corn syrup consumption in adolescent rats causes bipolar-like behavioural phenotype with hyperexcitability in hippocampal CA3-CA1 synapses. British Journal of Pharmacology, 175(24), 4450-4463. DOI:10.1111/ bph.14500.

  2. Aune, D., Chan, D. S. M., Vieira, A. R., Navarro Rosenblatt, D. A.,Vieira, R., Greenwood, D. C., Cade, J. E., Burley, V. J. & Norat, T. (2012). Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Annals of Oncololgy, 23(10), 2536-2546. DOI:10.1093/annonc/mds076.

  3. Bergheim, I., Weber, S., Vos, M., Krämer, S., Volynets, V., Kaserouni, S., McClain, C. J. & Bischoff, S. C. (2008). Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. Journal of Hepatology, 48(6), 983-992. DOI: 10.1016/j. jhep.2008.01.035.

  4. Bergman, R. N., Kim, S. P., Hsu, I. R., Catalano, K. J., Chiu, J. D., Kabir, M., Richey, J. M. & Ader, M. (2007).Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. The American Journal of Medicine, 120(2), S3-S8. DOI: 10.1016/j.amjmed.2006.11.012.

  5. Bray, G. A. (2013). Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people. Advances in Nutrition, 4(2), 220-225. DOI:10.3945/an.112.002816.

  6. Cabada, X. (2019, noviembre). Jarabe de maíz de alta fructosa, el gran impostor del azúcar. Revista del consumidor, (513), 38-43. Recuperado de: https://issuu.com/profeco/docs/ revista_del_consumidor_noviembre_20_78e7e72f07c02b.

  7. Carvallo, P., Carvallo, E., Barbosa-da-Silva, S., Mandarim-de- Lacerda, C. A., Hernández, A. & del-Sol, M. (2019). Efectos metabólicos del consumo excesivo de fructosa añadida. International Journal of Morphology, 37(3), 1058- 1066. DOI:10.4067/s0717-95022019000301058.

  8. Cicero, A. F. G., Fogacci, F., Desideri, G., Grandi, E., Rizzoli, E., D’Addato, S. & Borghi, C. (2019). Arterial stiffness, sugar-sweetened beverages and fruits intake in a rural population sample: Data from the Brisighella heart study. Nutrients, 11(11), 2674. DOI:10.3390/nu11112674

  9. Charles, E. F., Lambert, C. G. & Kerner, B. (2016). Bipolar disorder and diabetes mellitus: evidence for diseasemodifying effects and treatment implications. International Journal of Bipolar Disorders, 4(1), 13. DOI:10.1186/ s40345-016-0054-4.

  10. Comín-Anduix, B., Boren, J., Martinez, S., Moro, C., Centelles, J. J., Trebukhina, R., Petushok, N., Lee, W. P., Boros, L. G. & Cascante, M. (2001). The effect of thiamine supplementation on tumour proliferation. European Journal of Biochemistry, 268(15), 4177-4182. DOI:10.1046/j.1432- 1327.2001.02329.x.

  11. Cox, C. L., Stanhope, K. L., Schwarz, J., Graham, J. L., Hatcher, B., Griffen, S. C., Bremer, A. A., Berglund, L., McGahan, J. P., Keim, N. L. & Havel, P. J. (2012). Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutrition & Metabolism, 9(1), 68. DOI:10.1186/1743-7075-9-68

  12. Dahl, W. J., Foster, L. & Owen, R. J. (2020). Los hechos acerca de la fructosa. IFAS extensión, University of Florida.

  13. De Sousa Rodrigues, M. E., Bekhbat, M., Houser, M. C., Chang, J., Walker, D. I., Jones, D. P., Oller do Nascimento, C. M. P., Barnum, C. J. & Tansey, M. G. (2017). Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behavior Immunity, 59(1), 158-172. DOI: 10.1016/j. bbi.2016.08.021.

  14. Dornas, W. C., de Lima, W. G., Pedrosa, M. L. & Silva, M, E. (2015). Health implications of high-fructose intake and current research. Advances in Nutrition, 6(6), 729-737. DOI: 10.3945/an.114.008144.

  15. Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Slezak, L. A., Andersen, D. K., Hundal, R. S., Rothman, D. L., Petersen, K. F. & Shulman, G. I. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. Journal of Clinical Investigation, 103(2), 253- 259. DOI:10.1172/jci5001.

  16. Gao, W., Li, N., Li, Z., Xu, J. & Su, C. (2018). Ketohexokinase is involved in fructose utilization and promotes tumor progression in glioma. Biochemical and Biophysical Research Communications, 503(3), 1298-1306. DOI: 10.1016/j.bbrc.2018.07.040.

  17. García, G. M., Quintero, R. R. & López-Munguía, C. A. (2004) Biotecnología alimentaria (1ª ed.). [EPUB], Ciudad de México. México.

  18. Gatineau, E., Polakof, S., Dardevet, D. & Mosoni, L. (2017). Similarities and interactions between the ageing process and high chronic intake of added sugars. Nutrition Research Reviews, 30(02), 191-207. DOI:10.1017/ s0954422417000051.

  19. Genkinger, J. M., Li, R., Spiegelman, D., Anderson, K. E., Albanes, D., Bergkvist, L., Bernstein, L., Black, A., Van den Brandt, P. A., English, D. R., Freudenheim, J. L., Fuchs, C. S., Giles, G. G., Giovannucci, E., Goldbohm, R. A., Horn-Ross, P. L., Jacobs, E. J., Koushik, A., Männistö, S., Marshall, J. R., Miller, A. B., Patel, A. V., Robien, K., Rohan, T. E., Schairer, C., Stolzenberg-Solomon, R., Wolk, A., Ziegler, R. G. & Smith-Warner, S. A. (2011). Coffee, tea, and sugar-sweetened carbonated soft drink intake and pancreatic cancer risk: A pooled analysis of 14 cohort studies. Cancer Epidemiology Biomarkers & Prevention, 21(2), 305-318. DOI: 10.1158/1055-9965.epi-11-0945-t.

  20. Goncalves M. D., Lu, C., Tutnauer, J., Hartman, T. E., Hwang, S. K., Murphy, C. J., Pauli, C., Morris, R., Taylor, S., Bosch, K., Yang, S., Wang, Y., Van Riper, J., Lekaye, H., C., Roper, J., Kim, Y., Chen, Q., Gross, S. S., Rhee, K., Y., Cantley, L. C. & Yun, J. 2019. High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 363(6433), 1345- 1349. DOI:10.1126/science.aat8515.

  21. Hsu, T. M., Konanur, V. R., Taing, L., Usui, R., Kayser, B. D., Goran, M. I. & Kanoski, S. E. (2014). Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus, 25(2), 227-239. DOI:10.1002/ hipo.22368.

  22. Jia, G., Aroor, A. R., Whaley-Connell, A. T. & Sowers, J. R. (2014). Fructose and uric acid: ¿Is there a role in endothelial function? Current Hypertension Reports, 16(6), 434. DOI:10.1007/s11906-014-0434-z.

  23. Jiang, Y., Pan, Y., Rhea, P. R., Tan, L., Gagea, M., Cohen, L., Fischer, S. M. & Yang, P. (2016). A sucrose-enriched diet promotes tumorigenesis in mammary gland in part through the 12-lipoxygenase pathway. Cancer Research, 76(1), 24–29. DOI: 10.1158/0008-5472.CAN-14-3432.

  24. Johnson, R. K., Appel, L. J., Brands, M., Howard, B. V., Lefevre, M., Lusting, R. H., Sacks, F., Steffen, L. M. & Wylie-Rosett, J. (2009). Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation, 120(11), 1011– 1020. DOI:10.1161/circulationaha.109.192627.

  25. Kammoun, H. L., Chabanon, H., Hainault, I., Luquet, S., Magnan, C., Koike, T., Ferré, P. & Foufelle, F. (2009). GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. Journal of Clinical Investigation, 119(5), 1201-1215. DOI:10.1172/ jci37007.

  26. Koo, H. Y., Wallig, M. A., Chung, B. H., Nara, T. Y., Cho, B. H. S.& Nakamura, M. T. (2008). Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica et Biophysica Acta, 1782(5), 341-348. DOI: 10.1016/j. bbadis.2008.02.007.

  27. Kovačević, S., Nestorov, J., Matić, G. & Elaković, I. (2014) Dietary fructose-related adiposity and glucocorticoid receptor function in visceral adipose tissue of female rats. European Journal of Nutrition, 53(6),1409-1420. DOI: 10.1007/s00394-013-0644-1.

  28. Krssak, M., Brehm, A., Bernroider, E., Anderwald, C., Nowotny, P., Man, C. D., Cobeli, C. Cline, G. W., Shulman, G. I., Waldhäusl, W. & Roden, M. (2004). Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes, 53(12), 3048-3056. DOI:10.2337/ diabetes.53.12.3048.

  29. Lê, K. A., Faeh, D., Stettler, R., Ith, M., Kreis, R., Vermathen, P., Boesch, C., Ravussin, E. & Tappy, L. (2006). A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. The American Journal of Clinical Nutrition, 84(6), 1374- 1379. DOI:10.1093/ajcn/84.6.1374.

  30. Lindqvist, A., Baelemans, A. & Erlanson-Albertsson, C. (2008). Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regulatory Peptides, 150(1-3), 26-32. DOI: 10.1016/j.regpep.2008.06.0.

  31. Liu, H., Huang, D., McArthur, D. L., Boros, L. G., Nissen, N. & Heaney, A. P. (2010). Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Research, 70(15), 6368-6376. DOI: 10.1158/0008-5472.can-09-4615.

  32. Mayes, P. A. (1993). Intermediary metabolism of fructose. The American Journal of Clinical Nutrition, 58(5), 754S-765S. DOI: 10.1093/ajcn/58.5.754S.

  33. Nöthlings, U., Murphy, S. P., Wilkens, L. R., Henderson, B. E. & Kolonel, L. N. (2007). Dietary glycemic load, added sugars, and carbohydrates as risk factors for pancreatic cancer: The multiethnic cohort study. The American Journal of Clinical Nutrition,86(5), 1495-1501. DOI:10.1093/ajcn/86.5.1495.

  34. Olivares-Reyes, J. A. & Arellano-Plancarte, A. (2008). Bases moleculares de las acciones de la insulina. Revista de Educación Bioquímica, 27(1), 9-18.

  35. Ozawa, T., Maehara, N., Kai, T., Arai, S. & Miyazaki, T. (2016).Dietary fructose-induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (AIM). Genes Cells, 21(12), 1320-1332. DOI: 10.1111/gtc.12446.

  36. Pektaş, M. B., Sadi, G. & Akar, F. (2015). Long-term dietary fructose causes gender-different metabolic and vascular dysfunction in rats: Modulatory effects of resveratrol. Cellular Physiology and Biochemistry, 37(4), 1407- 1420. DOI:10.1159/000430405.

  37. Robubi, A., Huber, K. R. & Krugluger, W. (2014). Extra fructose in the growth medium fuels lipogenesis of adipocytes. Journal of Obesity, 2014(1), 1-6. DOI: 10.1155/2014/647034.

  38. Roglans, N., Vila, L., Farre, M., Alegret, M., Sánchez, R. M., Vazquez-Carrera, M. & Laguna J. C. (2007). Impairment of hepatic Stat-3 activation and reduction of PPARalpha activity in fructose-fed rats, Hepatology, 45(3), 778-788. DOI: 10.1002/help.21499.

  39. Rutledge, A. C. & Adeli, K. (2008). Fructose and the metabolic syndrome: Pathophysiology and molecular mechanisms. Nutrition Reviews, 65(6), 13-23. DOI: 10.1111/j.1753- 4887. 2007.tb00322.x.

  40. Samuel, V. T., Liu, Z. X., Qu, X., Elder, B. D., Bilz, S., Befroy, D., Romanelli, A. J. & Shulman, G. I. (2004). Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. Journal of Biological Chemistry, 279(31), 32345- 32353. DOI: 10.1074/jbc.m313478200.

  41. Shu, H. J., Isenberg, K., Cormier, R. J., Benz, A. & Zorumski, C. F. (2006). Expression of fructose sensitive glucose transporter in the brains of fructose-fed rats. Neuroscience, 140(3), 889-895. DOI: 10.1016/j.neuroscience.2006.02.071.

  42. Shulman, G. I. (2000).Cellular mechanisms of insulin resistance. Journal of Clinical Investigation, 106(2), 171-176. DOI: 10.1172/jci10583.

  43. Soria, J, (2010) Análisis causa y efecto de la ingesta de jarabe de alta fructosa (HFSC). [Tesis de licenciatura]. 1-40. Ciudad de México. Instituto Politécnico Nacional.

  44. Spruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S. C. & Bergheim, I. (2009). Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology, 50(4), 1094-1104. DOI:10.1002/ hep.23122.

  45. Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., Hatcher, B., Cox, C.L., Dyachenko, A., Zhang, W., McGahan, J. P., Seibert, A., Krauss, R. M., Chiu, S., Schaefer, E. J., Ai, M., Otokozawa, S., Nakajima, K., Nakano, T., Beysen, C., Hellerstein, M. K., Berglund, L. & Havel, P. J. (2009). Consuming fructose-sweetened, not glucosa-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in verweight/obese humans. The Journal of Clinical Investigation, 119(5), 1322-1334. DOI: 10.1172/ JCI37385.

  46. Strober, J. W. & Brady, M. J. (2019). Dietary fructose consumption and triple-negative breast cancer incidence. Frontiers in Endocrinology, 12(10), 1-7. DOI: 10.3389/ fendo.2019.00367.

  47. Szendroedi, J., Yoshimura, T., Phielix, E., Koliaki, C., Marcucci, M., Zhang, D., Jelenik, T., Müller, J., Herder, C., Nowotny, P., Shulman, G. I. & Roden, M. (2014). Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proceedings of the National Academy of Sciences, 111(26), 9597-9602. DOI: 10.1073/ pnas.1409229111.

  48. Tappy, L. & Lê K. A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiolical Reviews, 90(1), 23-46. DOI: 10.1152/physrev.00019.2009.

  49. Theytaz, F., de Giorgi, S., Hodson, L., Stefanoni, N., Rey, V., Schneiter, P., Giusti, V. & Tappy, L. (2014). Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients, 6(7), 2632-2649. DOI :10.3390/ nu6072632.

  50. Tsai, J., Zhang, R., Qiu, W., Su, Q., Naples, M. & Adeli, K. (2009). Inflammatory NF-κB activation promotes hepatic apolipoprotein B100 secretion: evidence for a link between hepatic inflammation and lipoprotein production. American Journal of Physiology-Gastrointestinal and Liver Physiology, 296(6), G1287-G1298. DOI:10.1152/ ajpgi.90540.2008.

  51. Veech, R. L., (2003). A humble hexose monophosphate pathway metabolite regulates short- and long-term control of lipogénesis. Proceedings of the National Academy of Sciences, 100(10), 5578-5580. DOI:10.1073/ pnas.1132039100.

  52. Zavaroni, I., Sander, S., Scott, S. & Reaven, G. M. (1980). Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism, 29(10), 970-973. DOI:10.1016/0026- 0495(80)90041-4.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24