medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

2-Oxazoline: Polymerization and synthesis of macromonomers

Ludeña-Huaman MA
Full text How to cite this article

Language: Spanish
References: 24
Page:
PDF size: 237.98 Kb.


Key words:

2-oxazoline, macromonomers, polymerization, initiator, terminator.

ABSTRACT

The chemistry of poly(2-oxazoline) has resurfaced in the last two decades due to their easy synthesis, as well as the ability to modulate their chemical structure and properties. Furthermore, poly(2-oxazoline)s are biocompatible and many have thermoresponsive properties. 2-Oxazoline macromonomers are usually used as a starting material to perform the synthesis of graft copolymers, star copolymers and also dendrimers. But also macromonomers can be introduced in the synthesis of materials with more complex structures as hydrogels or nanogeles. For this reason, this manuscript describes fundamental and important chemical aspects about the polymerization and preparation of macromonomers by the initiator and terminator method of the living polymerization of 2-oxazoline. The importance of the initiator, terminator as well as the substituent on 2-oxazoline is discussed.


REFERENCES

  1. Bloksma, M. M., Weber, C., Perevyazko, I. Y., Kuse, A., Baumgärtel, A., Vollrath, A., Hoogenboom, R. & Schubert, U. S. (2011). Poly(2-cyclopropyl-2-oxazoline): From Rate Acceleration by Cyclopropyl to Thermoresponsive Properties. Macromolecules, 44(11), 4057–4064. https:// doi.org/10.1021/ma200514n

  2. Dargaville, T. R., Park, J. R. & Hoogenboom, R. (2018). Poly(2- oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. Macromolecular Bioscience, 18(6), 1800070. https://doi.org/10.1002/mabi.201800070

  3. De la Rosa, V. R. (2014). Poly(2-oxazoline)s as materials for biomedical applications. Journal of Materials Science: Materials in Medicine, 25(5), 1211–1225. https://doi. org/10.1007/s10856-013-5034-y

  4. Fijten, M. W. M., Hoogenboom, R. & Schubert, U. S. (2008). Initiator effect on the cationic ring-opening copolymerization of 2-ethyl-2-oxazoline and 2-phenyl-2-oxazoline. Journal of Polymer Science Part A: Polymer Chemistry, 46(14), 4804–4816. https://doi.org/10.1002/pola.22814

  5. Glassner, M., D’hooge, D. R., Young Park, J., Van Steenberge, P. H. M., Monnery, B. D., Reyniers, M.-F. & Hoogenboom, R. (2015). Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators. European Polymer Journal, 65, 298–304. https://doi.org/10.1016/j. eurpolymj.2015.01.019

  6. Hadjichristidis, N., Pitsikalis, M., Iatrou, H. & Pispas, S. (2003). The Strength of the Macromonomer Strategy for Complex Macromolecular Architecture: Molecular Characterization, Properties and Applications of Polymacromonomers. Macromolecular Rapid Communications, 24(17), 979– 1013. https://doi.org/10.1002/marc.200300050

  7. Hoogenboom, R. (2009). Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angewandte Chemie International Edition, 48(43), 7978–7994. https://doi. org/10.1002/anie.200901607

  8. Hoogenboom, R. & Schlaad, H. (2017). Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polymer Chemistry, 8(1), 24–40. https://doi.org/10.1039/ C6PY01320A

  9. Hoogenboom, R., Thijs, H. M. L., Jochems, M. J. H. C., Lankvelt, B. M. van, Fijten, M. W. M. & Schubert, U. S. (2008). Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(Nisopropylacrylamide)?. Chemical Communications, 44, 5758–5760. https://doi.org/10.1039/B813140F

  10. Kelly, A. M. & Wiesbrock, F. (2012). Strategies for the Synthesis of Poly(2-Oxazoline)-Based Hydrogels. Macromolecular Rapid Communications, 33(19), 1632-1647. https://doi. org/10.1002/marc.201200333

  11. Kobayashi, S., Tokuzawa, T. & Saegusa, T. (1982). Cationic ringopening isomerization polymerization of 2-[p-(substituted) phenyl]-2-oxazolines. Effects of the substituent on the reactivities. Macromolecules, 15(6), 707-710. https://doi. org/10.1021/ma00231a005

  12. Li, T., Tang, H. & Wu, P. (2015). Molecular Evolution of Poly(2-isopropyl-2-oxazoline) Aqueous Solution during the Liquid–Liquid Phase Separation and Phase Transition Process. Langmuir, 31(24), 6870–6878. https://doi. org/10.1021/acs.langmuir.5b01009

  13. Lin, P., Clash, C., Pearce, E. M., Kwei, T. K. & Aponte, M. A. (1988). Solubility and miscibility of poly(ethyl oxazoline). Journal of Polymer Science Part B: Polymer Physics, 26(3), 603–619. https://doi.org/10.1002/polb.1988.090260312

  14. Luxenhofer, R., Bezen, M. & Jordan, R. (2008). Kinetic Investigations on the Polymerization of 2-Oxazolines Using Pluritriflate Initators. Macromolecular Rapid Communications, 29(18), 1509–1513. https://doi. org/10.1002/marc.200800293

  15. Nuyken, O., Maier, G., Groß, A. & Fischer, H. (1996). Systematic investigations on the reactivity of oxazolinium salts. Macromolecular Chemistry and Physics, 197(1), 83–95. https://doi.org/10.1002/macp.1996.021970106

  16. Obeid, R., Tanaka, F. & Winnik, F. M. (2009). Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water. Macromolecules, 42(15), 5818–5828. https://doi. org/10.1021/ma900838v

  17. Patton, D. L. & Advincula, R. C. (2006). A Versatile Synthetic Route to Macromonomers via RAFT Polymerization. Macromolecules, 39(25), 8674–8683. https://doi. org/10.1021/ma061382h

  18. Pizzi, D., Humphries, J., Morrow, J. P., Fletcher, N. L., Bell, C. A., Thurecht, K. J. & Kempe, K. (2019). Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. European Polymer Journal, 121, 109258. https://doi.org/10.1016/j. eurpolymj.2019.109258

  19. Ramírez, J. M. C. (2020). Macromonómeros: Síntesis y Aplicaciones. Revista Bases de la Ciencia, 5(1), 15–40. https://doi.org/10.33936/rev_bas_de_la_ciencia. v5i1.1904

  20. Rempp, P. F. & Franta, E. (1984) Macromonomers: Synthesis, characterization and applications. In: Polymerization Reactions. Advances in Polymer Science, 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-12793- 3_6

  21. Schlüter, A. D. & Rabe, J. P. (2000). Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition, 39(5), 864–883. https://doi.org/10.1002/(SICI)1521- 3773(20000303)39:5<864::AID-ANIE864>3.0.CO;2-E

  22. Vazaios, A., Lohse, D. J. & Hadjichristidis, N. (2005). Linear and Star Block Copolymers of Styrenic Macromonomers by Anionic Polymerization. Macromolecules, 38(13), 5468–5474. https://doi.org/10.1021/ma0473364

  23. Verbraeken, B., Monnery, B. D., Lava, K. & Hoogenboom, R. (2017). The chemistry of poly(2-oxazoline)s. European Polymer Journal, 88,451–469. https://doi.org/10.1016/j. eurpolymj.2016.11.016

  24. Yamashita, Y. (1993). Chemistry and industry of macromonomers. Hüthig & Wepf Verlag.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24