medigraphic.com
SPANISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 4

Next >>

Arch Neurocien 2021; 26 (4)

Comparison between motor control of insects and mammals. Inspired in “neurobiology of insect motor control”

Alcaraz-Zubeldia M
Full text How to cite this article

Language: Spanish
References: 12
Page: 6-8
PDF size: 163.85 Kb.


Key words:

motor coordination, march, kinematics, mammals.

ABSTRACT

This reflection, inspired by the article “Neurobiology of motor control in Insects” raises the particularities of motor control of chordates and especially in mammals, as well as the difficulty to raise motor control through a central pattern generator (GCP). However, several functional analogies between insects and mammals are discussed.


REFERENCES

  1. Ortega V.M. La evolución de la locomoción animal. Revista Ciencia. 2011. AMC. 62 (2): 60-67.

  2. Gasc JP. Comparative aspects of gait, scaling and mechanics in mammals. Comp Biochem Physiol A Mol Integr Physiol. 2001; 131(1):121- 33. DOI:10.1016/s1095-6433(01)00457-3

  3. Gasc JP. Asymmetrical gait of the Saharian rodent (Meriones shawi shawi (Duvernoy, 1842) (Rodentia, Mammalia: a high-speed cinematographic analysis. Can. J. Zool. 71: 790-798. DOI:10.1139/z93-104

  4. Young JW, Russo GA, Fellmann CD, Thatikunta MA, Chadwell BA. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus). J Exp Zool A Ecol Genet Physiol. 2015; 323(8):556-566. DOI:10.1002/jez.1948

  5. Tellería JJL, Padilla CM, Tena LE. Adaptaciones a la locomoción: modificaciones del quiridio. Museo de Anatomía comparada de vertebrados. Universidad Complutense de Madrid. https://biologicas.ucm.es/data/cont/docs/2-2018-06-13-QR-2.pdf

  6. Kiehn O, Dougherty KJ, Hägglund M, Borgius L, Talpalar A, Restrepo CE. Probing spinal circuits controlling walking in mammals. Biochem Biophys Res Commun. 2010; 396: 11-18. DOI: 10.1016/j.bbrc.2010.02.107

  7. Strang KT, Steudel K. Explaining the scaling of transport costs: the role of stride frequency and stride length. J Zool Lond. 1990; 221: 343-358. DOI:10.1111/J.1469-7998.1990.TB04006.X

  8. Fernández-Villalobos, G. Neurobiología del control motor en Insectos. Arch Neurocien (Mex). 2019; 24 (1):17-27. DOI: 10.31157/ archneurosciencesmex.v26i2.277

  9. Jahn K, Wühr M. The Senses: A Comprehensive Reference. Postural Control Mechanisms in Mammals, Including Humans. Elsevier Inc. 2nd edition. 2020; 6.2: 344-370. DOI: 10.1016/B978-0-12-809324-5.24132-1

  10. Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res. 2004; 143: 123-129. DOI: 10.1016/ S0079-6123(03)43012-4

  11. Giuliano C., Cerri S., Blandini F. Potential therapeutic effects of polyphenols in Parkinson’s disease: in vivo and in vitro pre-clinical studies. Neural Regen Res. 2021. 16(2): 234-241. DOI: 10.4103/1673-5374.290879

  12. Wan T., Weir E.J., Johnson M., Korolchuk V.I., Saretzki G.C. Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog Neurobiol. 2021; 199: 101953. DOI: 10.1016/j.pneurobio.2020.101953




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2021;26