medigraphic.com
SPANISH

Revista Cubana de Higiene y Epidemiología

ISSN 1561-3003 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 1

<< Back Next >>

Rev Cubana Hig Epidemiol 2020; 57 (1)

Statistical models to predictions of the COVID-19 in Cuba

Prades EE, Marín SD
Full text How to cite this article

Language: Spanish
References: 15
Page: 1-13
PDF size: 595.5 Kb.


Key words:

COVID-2019, prediction, RMSE, residuals, MAPE.

ABSTRACT

Introduction: Studies based on statistical models play an important role for predictions about COVID-19.
Objective: To carry out a statistical modeling analysis combining 6 forecast models to predict the appearance of daily positive cases, active and deceased by COVID-19 in Cuba.
Method: Data reported daily from March 11 to May 25 from the CUBADEBATE website were used, which were processed and analyzed. The performance of the models was calculated: Mean absolute error (MAE), root of the mean square error (RMSE), percent of mean absolute error (MAPE) and the mean error (ME) as well as the residual analysis.
Results: Models A and B gave a constant trend between 8 and 9 cases of until July 22. Model C indicated a decrease in cases with 4 that same day and model D indicated a raise to 19 cases. Model E indicated a minimum of 126 cases on June E and then a raise to 374 hospitalized cases. Deceases cases had a constant tendency in deceases numbers above of 80 cases in first 15 days of July.
Conclusions: The 6 models studied meet the statistical , performance and residual tests. Their data provides a forecast for COVID2019, representing a valid tool.


REFERENCES

  1. WHO Ebola Response Team. Ebola virus disease in West Africa-the first 9 months of the epidemic and forward projections. N Engl J Med 2014; 371:1481-95. DOI: https://10.1056/NEJMoa1411100

  2. Harun Yonar AY, Mustafa Agah T, Melike T. Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. Eurasian Journal of Medicine and Oncology. 2020;4(2):160-165.

  3. Díaz-Pinzóna JE. Precisión del pronóstico de la propagación del COVID-19 en Colombia. REPERT MED CIR. 2020;29(Núm. Supl.1):27-33.

  4. Liangrong P, Wuyue Y, Dongyan Z, Changjing Z, Liu H. Epidemic analysis of COVID-19 in China by dynamical modeling. medRxiv 2020.02.16.20023465. DOI: https://doi.org/10.1101/2020.02.16.20023465

  5. Funk S, Ciglenecki I, Tiffany A, Gignoux E, Camacho A, Eggo RM, et al. The impact of control strategies and behavioural changes on the elimination of Ebola from Lofa County, Liberia. Philos Trans R Soc Lond B Biol Sci 2017;372:20160302. DOI: https://doi.org/10.1098/rstb.2016.0302

  6. Kucharski AJ, Camacho A, Checchi F, Waldman R, Grais RF, Cabrol JC, et al. Evaluation of the benefits and risks of introducing Ebola community care centers, Sierra Leone. Emerg Infect Dis 2015;21:393-99. DOI: https://dx.doi.org/10.3201/eid2103.141892

  7. Camacho A, Kucharski A, Aki-Sawyerr Y, White MA, Flasche S, Baguelin M, Pollington T, Carney JR, Glover R, Smout E, Tiffany A, Edmunds WJ, Funk S. Temporal Changes in Ebola Transmission in Sierra Leone and Implications for Control Requirements: a Real-time Modelling Study. PLoS Curr. 2015 Feb 10;7:ecurrents.outbreaks.406ae55e83ec0b5193e30856b9235ed2. DOI: https://10.1371/currents.outbreaks.406ae55e83ec0b5193e30856b9235ed2

  8. Chaolin Huang YW, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan JX, et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet 2020; 395(10223): 497-506. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

  9. Cooper BS, Pitman R, Edmunds WJ, Gay NJ. Delaying the international spread of pandemic influenza. PLoS Med 2006;3(e212). DOI: https://doi.org/10.1371/journal.pmed.0030212

  10. López Fernández R, Yanes Seijo R, Suárez Surí P, Avello Martínez R, Gutiérrez Escobar M, Alvarado Flores R. Modelo estadístico predictivo para el padecimiento de pie diabético en pacientes con diabetes mellitus tipo II. Medisur [Internet]. 2016 Feb [citado 2020 Abr 19] ; 14(1): 42-52. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2016000100009&lng=es

  11. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief. 2020 abr 1;29. DOI: https://doi.org/10.1016/j.dib.2020.105340

  12. Artículos de salud. Cubadebate. Sitio web en Internet. 2020. [Citado: 23/04/2020]. Disponible en: Disponible en: http://www.cubadebate.cu/categoria/temas/salud-medicina/WebSISE .

  13. Pontificia Universidad Católica Madre y Maestra. Capítulo 18: Pronóstico. Sitio web internet. Disponible en: http://webappst.pucmm.edu.do/websise/estudiante/materias/201620171/ST-ADM-413-T-003/Cap.%2018%20pronostico.pdf

  14. Alarcón MJ. Calificación del método de pronóstico de Torres (Segunda parte). Poliantea (Bogotá). 2009; 5(9): 175-201. DOI: https://10.15765/plnt.v5i9.278

  15. Dehesh T, Mardani-Fard H, Dehesh P. Forecasting of COVID-19 Confirmed Cases in Different Countries with ARIMA Models. medRxiv; 2020. DOI: https://10.1101/2020.03.13.20035345




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Hig Epidemiol. 2020;57