2021, Number 1-4
<< Back Next >>
Rev Mex Med Fis Rehab 2021; 33 (1-4)
In-home rehabilitation of cerebral vascular event during the COVID-19 pandemic: virtual reality vs. constraint induced motion induction
Rojas-Sosa MC, Rojano-Mejía D, Zárate JA, Ortiz-Islas AP, Olvera-Gómez JL, Garduño-Espinosa J
Language: Spanish
References: 37
Page: 6-16
PDF size: 317.01 Kb.
ABSTRACT
Introduction: Patients after stroke have poor access to presential rehabilitation due to the COVID-19 pandemic; the virtual reality (VR) and modified constraint-induced movement therapy (CIMTm) can be a management option at home that improves motor evolution.
Objective: To measure the effect of VR or CIMTm performed at home on hemiparesis after stroke.
Material and methods: Participants: 27 patients. Ten underwent VR, 8 CIMTm and 9 conventional therapy (FT/OTc). All were taught to work at home. The assessment was carried out with the Fugl-Meyer and fine clamp scales. The evaluators were blinded to therapy group. Analysis: Friedman and Kruskal-Wallis tests (p < 0.05).
Results: All three groups started with very severe disability. At the end of their treatment, there was intra-group improvement of hemiparesis (p < 0.05) in the three therapies types, but comparison among groups showed that VR was significantly better (83.3 ± 9.08 points) compared to CIMTm (43.25 ± 3.53) and FT/OTc (51.77 ± 11.98 points) (p < 0.05), including hand function (p = 0.039). With VR the patients achieved a mild disability, while with CIMTm and FT/OTc they reached a severe level.
Conclusions: VR therapy at home significantly improved hemiparesis after stroke compared with CIMTm and conventional FT/OTc.
REFERENCES
Coppola A, Tagliaferri A, Rivolta GF, Quintavalle G, Franchini M. Confronting COVID-19: issues in hemophilia and congenital bleeding disorders. Semin Thromb Hemost. 2020; 46 (7): 819-822. doi: 10.1055/s-0040-1712961.
Vogler SA, Lightner AL. Rethinking how we care for our patients in a time of social distancing during the COVID-19 pandemic. Br J Surg. 2020; 107 (8): 937-939. doi: 10.1002/bjs.11636.
Wang CC, Chao JK, Wang ML, Yang YP, Chien CS, Lai WY et al. Care for patients with stroke during the COVID-19 pandemic: physical therapy and rehabilitation suggestions for preventing secondary stroke. J Stroke Cerebrovasc Dis. 2020; 29 (11): 105182. doi: 10.1016/j.jstrokecerebrovasdis.2020.105182.
Bompard S, Liuzzi T, Staccioli S, D'Arienzo F, Khosravi S, Giuliani R et al. Home-based music therapy for children with developmental disorders during the COVID-19 pandemic. J Telemed Telecare. 2021; 7: 1357633X20981213. doi: 10.1177/1357633X20981213.
Wang CC, Chao JK, Chang YH, Chou CL, Kao CL. Care for patients with musculoskeletal pain during the COVID-19 pandemic: Physical therapy and rehabilitation suggestions for pain management. J Chin Med Assoc. 2020; 83 (9): 822-824. doi: 10.1097/JCMA.0000000000000376.
Coluzzi F, Marinangeli F, Pergolizzi J. Managing chronic pain patients at the time of COVID-19 pandemic. Minerva Anestesiol. 2020; 86 (8): 797-799. doi: 10.23736/S0375-9393.20.14666-2.
Sobierajska-Rek A, Manski L, Jablonska-Brudlo J, Sledzinska K, Ucinska A, Wierzba J. Establishing a telerehabilitation program for patients with Duchenne muscular dystrophy in the COVID-19 pandemic. Wien Klin Wochenschr. 2021; 133 (7-8): 344-350. doi: 10.1007/s00508-020-01786-8.
Rajsic S, Gothe H, Borba HH, Sroczynski G, Vujicic J, Toell T et al. Economic burden of stroke: a systematic review on post-stroke care. Eur J Health Econ. 2019; 20 (1): 107-134. doi: 10.1007/s10198-018-0984-0.
García-Sánchez JL, Jiménez-Saab NG, Guerrero-González J, Elizalde-Barrera CI, Reyna-Ramírez MJ, Rubio-Sánchez ME et al. Hiperleptinemia asociada a evento vascular cerebral isquémico (EVCi). Gac Med Mex. 2016; 152: 78-86.
Lee KP, Chang AYW, Sung PS. Association between blood pressure, blood pressure variability, and post-stroke cognitive impairment. Biomedicines. 2021; 9 (7): 773. doi: 10.3390/biomedicines9070773.
Ropper AH, Samuels MA, Klein JP. Cap. 34: Enfermedades cerebrovasculares. En: Ropper AH, Brown RH. Principios de neurología, de Adams y Victor. 10a ed. México: Editorial McGraw-Hill; 2017.
Lee JK, Ko MH, Park SH, Kim GW. Prediction of aphasia severity in patients with stroke using diffusion tensor imaging. Brain Sci. 2021; 11 (3): 304. doi: 10.3390/brainsci11030304.
Craje C, van der Graaf C, Lem FC, Geurts AC, Steenbergen B. Determining specificity of motor imagery training for upper limb improvement in chronic stroke patients: a training protocol and pilot results. Int J Rehabil Res. 2010; 33 (4): 359-362.
Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020; 19 (4): 348-360. doi: 10.1016/S1474-4422(19)30415-6.
Sarfo FS, Ulasavets U, Opare-Sem OK, Ovbiagele B. Tele-rehabilitation after stroke: an updated systematic review of the literature. J Stroke Cerebrovasc Dis. 2018; 27 (9): 2306-2318. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.013.
Barrios M, Rodríguez L, Pachón C, Medina B, Sierra JE. Telerrehabilitación funcional en entornos virtuales interactivos como propuesta de rehabilitación en pacientes con discapacidad. Rev Espacios. 2019; 40 (25): 1.
Bani-Ahmed AA. Post-stroke motor recovery and cortical organization following Constraint-Induced Movement Therapies: a literature review. J Phys Ther Sci. 2019; 31 (11): 950-959. doi: 10.1589/jpts.31.950.
King DL, Delfabbro PH, Billieux J, Potenza MN. Problematic online gaming and the COVID-19 pandemic. J Behav Addict. 2020; 9 (2): 184-186. doi: 10.1556/2006.2020.00016.
Chen L, Lo WL, Mao YR, Ding MH, Lin Q, Li H. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016; 2016: 7309272. doi: 10.1155/2016/7309272.
Taub E, Uswatte G, Pidikiti R. Constraint induced movement therapy; a new family of techniques with broad application to physical rehabilitation, a clinical review. J Rehabil Res Development. 1999; 36: 237-251.
Warland A, Paraskevopoulos I, Tsekleves E, Ryan J, Nowicky A, Griscti J et al. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study. Disabil Rehabil. 2019; 41 (18): 2119-2134.
Khizhnikova AE, Klochkov AS, Kotov-Smolensky AM, Chernikova LA, Suponeva NA, Piradov MA. Motor learning of the post-stroke patients presenting with upper limb paresis on the mechanotherapeutic system. Vopr Kurortol Fizioter Lech Fiz Kult. 2018; 95 (1): 20-25.
Treger I, Aidinof L, Lehrer H, Kalichman L. Modified constraint-induced movement therapy improved upper limb function in subacute poststroke patients: a small-scale clinical trial. Top Stroke Rehabil. 2012; 19 (4): 287-293. doi: 10.1310/tsr1904-287.
Hu J, Li C, Hua Y, Liu P, Gao B, Wang Y et al. Constraint-induced movement therapy improves functional recovery after ischemic stroke and its impacts on synaptic plasticity in sensorimotor cortex and hippocampus. Brain Res Bull. 2020; 160: 8-23. doi: 10.1016/j.brainresbull.2020.04.006.
Page S, Sisto S, Levine P. Modified constrain-induced therapy, in chronic stroke. Am J Phys Med Rehabil. 2002; 81: 870-875.
Ordoñez-Mora LT, Delgado-Serna LJ, Gutiérrez-Muñoz YE, Pinzón-Bernal MY, Castellanos-Ruiz J. Terapia de restricción del lado sano como opción de manejo de personas con secuelas de enfermedad cerebrovascular. Arch Med (Manizales). 2017; 17 (1): 173-184.
Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev. 2015; 2015 (10): CD004433. doi: 10.1002/14651858.CD004433.pub3.
Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015; 14 (2): 224-234. doi: 10.1016/S1474-4422(14)70160-7.
Cunningham D, Machado A, Janini D, Varnerin N, Bonnett C, Yue G et al. The assessment of inter-hemispheric imbalance using imaging and non-invasive brain stimulation in patients with chronic stroke. Arch Phys Med Rehabil. 2015; 96 (4 Suppl): S94-S103.
Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB. Similar motor recovery of upper and lower extremities after stroke. Stroke. 1994; 25 (6): 1181-1188. doi: 10.1161/01.str.25.6.1181.
de Rooij IJM, van de Port IGL, Visser-Meily JMA, Meijer JG. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials. 2019; 20 (1): 89. doi: 10.1186/s13063-018-3165-7.
Zeiler SR, Hubbard R, Gibson EM, Zheng T, Ng K, O'Brien R et al. Paradoxical motor recovery from a first stroke after induction of a second stroke: reopening a postischemic sensitive period. Neurorehabil Neural Repair. 2016; 30 (8): 794-800. doi: 10.1177/1545968315624783.
Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. 2009; 73 (3): 195-201. doi: 10.1212/WNL.0b013e3181ab2b27.
Rosso C, Valabregue R, Attal Y, Vargas P, Gaudron M, Samson Y. Contribution of corticospinal tract and functional connectivity in hand motor impairment after stroke. PLoS One. 2013; 8 (9): e73164.
Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018; 14 (7): 387-398. doi: 10.1038/s41582-018-0014-y.
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017; 11 (11): CD008349. doi: 10.1002/14651858.CD008349.pub4.
Gronberg A, Henriksson I, Lindgren A. Accuracy of NIH stroke scale for diagnosing aphasia. Acta Neurol Scand. 2021; 143 (4): 375-382. doi: 10.1111/ane.13388.