medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Rev Biomed 2022; 33 (3)

Chagas disease / COVID-19 comorbidity. An advantage to chagasic patients?

Añez N, Crisante G, Salmen S, Paredes C, Parada H
Full text How to cite this article

Language: English
References: 32
Page: 105-113
PDF size: 343.78 Kb.


Key words:

Chagas disease, COVID-19, Comorbidity, Venezuela.

ABSTRACT

Introduction. Chagas’s disease a neglected and debilitating tropical illness, caused by Trypanosoma cruzi-infection, afflicts millions of people in most Latin-American countries. In the same region, frequent and severe viral infection cases have been reported due to SARS-CoV-2, the causative agent of COVID-19, deemed as the worst global pandemic in the 21st century.
Objective. To investigate the Chagas disease- COVID-19-relationship, and the comorbidity effect on chagasic patients living in communities where SARS-CoV-2 have circulated during the last two years causing severe cases and deaths.
Material and methods. Randomly selected chagasic patients (N=50) from rural localities of western Venezuela, where COVID-19 has occurred, were evaluated in order to know whether they had suffered SARS-CoV-2- infection. COVID-infected chagasic patients were clinically compared with non-chagasic individuals (N=22) who had suffered the viruses in the same localities.
Results. SARS-CoV-2-infection caused significantly less aggressive effects in chagasic patients than in nonchagasic patients, evidenced by the short-lasting scarce mild symptoms and the attenuated clinical profile (p‹0.05), without further complications. Comparison revealed COVID-19 detection in 10% of chagasic patients, showing all of them mild clinical pattern and few symptoms, while non-chagasic COVID-infected control individuals, showed 45% and 13% severe and fatal cases, respectively.
Conclusion. Chagasic patients suffering from COVID-19 comorbidity seem to express a robust immune response (Th1/Th2/Th17), which associated with anti-T. cruzi-glycoproteins circulating antibodies, directed to certain SARS-CoV-2 glycoproteins (membrane/spike), may induce a short lasting and milder clinical profile. More investigations in populations where Chagas disease is endemic, is recommended.


REFERENCES

  1. Añez N, Crisante G. The tissue specific tropismin Trypanosoma cruzi. Is it true? Acta Tropica. 2021; 213:105736. https://doi.org/10.1016/j.actatropica.2020.105736.

  2. Zeigler C, Allon S, Nyquist S, Shalek A, Ordovas-Montanes J. et al. SARS-CoV-2 Receptor ACE2 is aninterferon-stimulated gene in human airway epithelialcells and is detected in specific cell subsets across tissues.Cell. 2020; 181:1016–35. https://doi.org/10.1016/j.cell.2020.04.035.

  3. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al.Clinical characteristics of coronavirus disease in China.N Engl J Med. 2020; 382:1708–20. doi:10.1056/NEJMoa2002032.

  4. Holshue M L, DeBolt C, Lindquist S, Lofy K H,Wiesman J, Bruce H, et al. Washington State 2019-nCoV Case Investigation Team First Case of 2019 NovelCoronavirus in the United States. N Engl J Med. 2020;382:929–936.

  5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al.Clinical features of patients infected with 2019 novelcoronavirus in Wuhan. China. Lancet. 2020; 395:497–506.

  6. Wölfel R, Corman V M, Guggemos W, Seilmaier M,Zange S, Müller MA, et al. Virological assessment ofhospitalized patients with COVID-2019. Nature. 2020;doi: 10.1038/s41586-020-2196-x.

  7. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinicalcourse and risk factors for mortality of adult inpatientswith COVID-19 in Wuhan, China: A retrospective cohortstudy. Lancet. 2020;395(10229):1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3.

  8. Dhama K, Khan AS, Tiwari R, Sircar S, Sudipta-BhatYSM, Singh KP, et al. Coronavirus Disease 2019–COVID-19. Clin Microbiol Rev. 2020; 33: e00028-20.

  9. Vargas-Gandica J, Winter D, Schnipper R, Rodriguez-Morales A, Mondragon J. et al. Ageusia and anosmia,a common sign of COVID-19? A case series from fourcountries. J Neurovirol. 2020; 26:785–789. https://doi.org/10.1007/s13365-020-00875-8.

  10. Willis SJ, Eberhardt K, Randall L, De Maria A, BrownC, Madoff L, et al. The evolving nature of syndromicsurveillance during the COVID-19 pandemic inMassachusetts. Abstracts OFI., 2021; 8 (suppl.1). S695.

  11. Zaidel EJ, Forsyth CJ, Novick G, Marcus R, RibeiroALP, Pinazo MJ, et al. COVID-19: Implications forpeople with Chagas disease. Glob Heart. 2020; 15:69.doi: 10.5334/gh.891.

  12. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, SavvatisK, Marelli-Berg FM, et al. COVID-19 and thecardiovascular system: Implications for risk assessment,diagnosis, and treatment options. Cardiovasc Res. 2020;116:1666–87. doi: 10.1093/cvr/cvaa106.

  13. Añez N, Carrasco H, Parada H, Crisante G, Rojas A,Gonzalez N, et al. Acute Chagas’ disease in WesternVenezuela. A clinical, sero-parasitological andepidemiological study. Am J Trop Med Hyg. 1999;60(2): 215-22.

  14. Añez N, Crisante G, Rojas A, Carrasco H, Parada H,Yépez Y, et al. Detection and significance of inapparentinfection in Chagas disease in Western Venezuela. Am JTrop Med Hyg. 2001; 65(3):227-32).

  15. Añez N, Crisante G, Rojas A. Update on Chagas´ diseasein Venezuela. Mem Inst Oswaldo Cruz. 2004; 99 (8):781-7.

  16. Añez N, Romero M, Crisante G, Bianchi G, Parada H.Valoración comparativa de pruebas sero diagnósticasutilizadas para detectar enfermedad de Chagas enVenezuela. Bol Mal Sal Amb.2010; 50(1):17-27.

  17. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19pathophysiology: A review. Clin Immunol.2020; 215:108427. https://doi.org.10.1016/j.clim.2020.108427.

  18. Walpole R E, Myers R H, Myers S L, Ye K. Probabilidady estadística para ingeniería y ciencias (No. TA340. P76.2007). México: Pearson education.

  19. Añez N, Crisante G, Rojas A, Dávila D. Brote deenfermedad de Chagas agudo de posible transmisión oralen Mérida, Venezuela. Bol Mal Sal Amb. 2013; 53(1):1-11.

  20. Añez N, Crisante G, Rojas A, Segnini S, EspinozaÁlvarezO, Teixeira MMG. Update on Chagas diseasein Venezuela during the period 2003-2018. A Review.Acta Tropica. 2020; 203 105310. http://doi.org/10.106/j.actatropica,2019105310.

  21. Diaz-Hernández A, González-Vázquez MC, Arce-Fonseca M, Rodriguez-Morales O, Cedillo-RamírezML, Carabarin-Lima A. Risk of COVID-19 inChagas Disease Patients: What Happens with CardiacAffectations? Biology (Basel). 2021; 10(5):411. doi:10.3390/biology10050411. PMID: 34066383; PMCID:PMC8148128.

  22. Molina I, Marcolino M, Pires M, Ramos L, Silva, RT,Guimarães MH, et al. Chagas disease and SARS-CoV-2coinfection does not lead to worse in-hospital outcomes:results from the Brazilian COVID-19 Registry. MedRxiv preprint.2021; https://doi.org/10.1101/2021.03.22.21254078.

  23. Amezcua-Vesely MC, Rodríguez C, Gruppi A, Acosta-Rodríguez EV. Interleukin-17 mediated immunity duringinfections with Trypanosoma cruzi and other protozoans.BBA-Mol Bas Dis. 2020; 1866:175706.

  24. Schechter M, Nogueira N. Variation induced by differentmethodologies in Trypanosoma cruzi surface antigenprofiles. Mol Biochem Parasitol. 1988; 29(1):37-45. doi:10.1016/0166-6851(88)90117-x.

  25. Silva A M, Brodskyn C I, Takehara H A, Mota I.Differences in the antigenic profile of bloodstream andcell culture derived trypomastigotes of Trypanosomacruzi. Rev Inst Med Trop São Paulo.1989; 31(3):146-150.

  26. Ferguson M A. The surface glycoconjugates ofTrypanosomatid parasites. Phil Trans Roy Soc LondonSeries B: Biological Sciences.1997; 352(1359):1295-1302.

  27. Englund P. The structure and biosynthesis of glycosylphosphatidyl inositol protein anchors. Ann Rev Biochem.1993; 62(1):121-138.

  28. McConville M, Ferguson MA. The structure, biosynthesisand function of glycosylated phosphatidylinositol in theparasitic protozoa and higher eukaryotes. Biochem. J.1993; 294(2):305-324.

  29. Añez-Rojas N, García-Lugo P, Crisante G, Rojas A,Añez N. Isolation, purification and characterization ofGPI-anchored membrane proteins from Trypanosomarangeli and Trypanosoma cruzi. Acta Tropica. 2006;97(2):140-5.

  30. Rojas A, García-Lugo P, Crisante G, Añez-Rojas N, AñezN. Isolation, purification, characterization and antigenicevaluation of GPI-anchored membrane proteins fromLeishmania (Viannia) braziliensis. Acta Tropica. 2008;105:139-144.

  31. Crisante G, García-Lugo P, Rojas A, Graterol D,Contreras V, Añez N. Validation of Trypanosoma cruzi-GPI anchored membrane proteins for specific serodiagnosisof Chagas disease. Am J Microbiol Biotech.2015; 2(3):26-37.

  32. Kumar, V. (2021). Toll-Like Receptors in AdaptiveImmunity. Handb Exp Pharmacol. 2021; doi:10.1007/164_2021_543.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2022;33