medigraphic.com
SPANISH

Revista Mexicana de Urología

Organo Oficial de la Sociedad Mexicana de Urología
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 4

<< Back Next >>

Rev Mex Urol 2022; 82 (4)

Disorders of sexual development associated with sex chromosomes: an update

Santamaria-Durán N, Suárez-Obando F, Rojas-Moreno A
Full text How to cite this article

Language: Spanish
References: 84
Page:
PDF size: 404.90 Kb.


Key words:

Disorders of Sex Development (DSD), Klinefelter Syndrome (47,XXY) (KS), Turner Syndrome (45,X) (TS) and Differentially Expressed Genes.

ABSTRACT

Description: Disorders of Sex Development (DSD) are congenital conditions characterized by a mismatch between external appearance (masculinity or femininity) and chromosomal constitution or gonadal sex. These manifestations are related to alterations at the level of go- nadal development and the urinary-genital tract, and even the repro- ductive-endocrine system. Among the causes of said manifestations are those of genetic origin, which are caused by chromosomal abnormali- ties, particularly of the sexual chromosomes, or by the appearance of genes involved in the embryonic development of the sexual organs; as well as by anomalies that generate an interruption of the synthesis of specific hormones.
Relevance: The group of DSD linked to alterations in the number of chromosomes includes the Klinefelter syndrome (47,XXY) (KS), and the Turner syndrome (45,X) (TS). Previous reports mention that sex chromosome aneuploidies directly impact genes, transcriptional fac- tors, and epigenetic mechanisms that delay gene expression.
Conclusions: There are few comparative molecular studies between patients with TS or KS in the literature. These studies are essential to understand the genetic processes that are related to the development of the pathologies of patients with these conditions, and thus, contribute to the improvement of the diagnosis, treatment and medical advice of TS or KS patients, directly impacting their quality of life. This article presents an updated review of DSD associated with sexual chromoso- mes, specifically TS and KS.


REFERENCES

  1. Núñez RG, Alarcón BMG. Fecundación Humana. Aspectos moleculares. Revisión Bibliográfica. MULTIMED. 2018;22(6):1260–79.

  2. MacLaughlin DT, Donahoe PK. Sex Determination and Differentiation. N Engl JMed. 2004;350(4):367–78. doi: https://doi. org/10.1056/nejmra022784

  3. Hutson JM, Warne GL, Grover SR. Disorders of Sex Development: An Integrated Approach to Management. Australia: Springer Science & Business Media; 2012. 311 p.

  4. Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118(2):e488-500. doi: https://doi.org/10.1542/peds.2006-0738

  5. Bashamboo A, McElreavey K. Human sex- determination and disorders of sex-development (DSD). Semin Cell Dev Biol. 2015;45:77–83. doi: https://doi.org/10.1016/j.semcdb.2015.10.030

  6. Mårild K, Størdal K, Hagman A, Ludvigsson JF. Turner Syndrome and Celiac Disease: A Case-Control Study. Pediatrics. 2016;137(2):e20152232. doi: https://doi. org/10.1542/peds.2015-2232

  7. Albisu Y. Síndrome de Turner. XVIII Curso de formación continuada. Gipuzkoa; 2001; Sociedad Vasco-Navarra de Pediatría.

  8. Pessia E, Makino T, Bailly-Bechet M, McLysaght A, Marais GAB. Mammalian X chromosome inactivation evolved as a dosage- compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A. 2012;109(14):5346–51. doi: https://doi. org/10.1073/pnas.1116763109

  9. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434(7031):400–4. doi: https://doi. org/10.1038/nature03479

  10. Manotas MC, Calderón JC, López-Kleine L, Suárez-Obando F, Moreno OM, RojasA. Identification of common differentially expressed genes in Turner (45,X) and Klinefelter (47,XXY) syndromes using bioinformatics analysis. Mol Genet Genomic Med. 2020;8(11):e1503. doi: https://doi. org/10.1002/mgg3.150

  11. Zhang X, Hong D, Ma S, Ward T, Ho M, Pattni R, et al. Integrated functional genomic analyses of Klinefelter and Turner syndromes reveal global network effects of altered X chromosome dosage. Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4864–73. doi: https://doi. org/10.1073/pnas.1910003117

  12. Colorado Garzon FA, Matta Camacho NE, Sanchez A. Sex-Determination systems and their evolution: Mammals. Acta Biológica Colombiana. 2012;17(1):3–18.

  13. Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat Genet. 1998;20(4):353–7. doi: https://doi.org/10.1038/3822

  14. Chirinos ARC, Rodríguez CEAM. Determinación sexual primaria o sexo genético. Revisión. MedULA. 2007;16(2):55–63.

  15. Makiyan Z. Studies of gonadal sex differentiation. Organogenesis. 2016;12(1):42– 51. doi: https://doi.org/10.1080/15476278.201 6.1145318

  16. Stévant I, Nef S. Genetic Control of Gonadal Sex Determination and Development. Trends Genet. 2019;35(5):346–58. doi: https://doi. org/10.1016/j.tig.2019.02.004

  17. Sajjad Y. Development of the genital ducts and external genitalia in the early human embryo. J Obstet Gynaecol Res. 2010;36(5):929– 37. doi: https://doi.org/10.1111/j.1447- 0756.2010.01272.x

  18. Díaz-Hernández V, Merchant-Larios H. Consideraciones generales en el establecimiento del sexo en mamíferos. TIP Revista especializada en ciencias químico-biológicas. 2017;20(1):27–39.

  19. Morel Y, Roucher F, Mallet D, Plotton I. Genetic of gonadal determination. Ann Endocrinol (Paris). 2014;75(2):32–9. doi: https://doi. org/10.1016/j.ando.2014.04.005

  20. Binet A, Gorduza D, Kallas Chemaly A, Gay C-L, Margain L, Scalabre A, et al. Desarrollo genital normal y patológico. EMC - Urología. 2017;49(2):1–10. doi: https://doi.org/10.1016/ S1761-3310(17)83675-6

  21. Chassot AA, Gregoire EP, Magliano M, Lavery R, Chaboissier MC. Genetics of Ovarian Differentiation: Rspo1, a Major Player. SXD. 2008;2(4–5):219–27. doi: https://doi. org/10.1159/000152038

  22. Lucas-Herald AK, Bashamboo A. Gonadal Development. Understanding Differences and Disorders of Sex Development (DSD). 2014; 27:1–16. doi: https://doi. org/10.1159/000363608

  23. Sarkar A, Hochedlinger K. The Sox Family of Transcription Factors: Versatile Regulators of Stem and Progenitor Cell Fate. Cell Stem Cell. 2013;12(1):15–30. doi: https://doi. org/10.1016/j.stem.2012.12.007

  24. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet. 1996;12(4):404–9. doi: https://doi. org/10.1038/ng0496-404

  25. Guerrero-Fernández J, Azcona San Julián C, Barreiro Conde J, Bermúdez de la Vega JA, Carcavilla Urquí A, Castaño González LA, et al. [Management guidelines for disorders / different sex development (DSD)]. An Pediatr(Engl Ed). 2018;89(5):315.e1-315.e19. doi:https://doi.org/10.1016/j.anpedi.2018.06.009

  26. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10(11):673–83. doi: https://doi.org/10.1038/nrendo.2014.163

  27. Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD): I) Fisiología, clasificación, abordaje y metodologíaII) Marcadores bioquímicos y genéticos diagnósticos en los 46,XX. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio. 2021;2(4):481-93. doi: https://doi. org/10.1515/almed-2020-0119

  28. Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Archives of Disease in Childhood. 2006;91(7):554–63. doi: https:// doi.org/10.1136/adc.2006.098319

  29. Ostrer H. Disorders of sex development (DSDs): an update. J Clin Endocrinol Metab. 2014;99(5):1503–9. doi: https://doi. org/10.1210/jc.2013-3690

  30. Fernández N, Moreno O, Rojas A, Céspedes C, Forero C, Mora L, et al. Manejo transdisciplinario de pacientes con desórdenes del desarrollo sexual en Colombia. Limitantes para un manejo oportuno e integral. Urología Colombiana. 2017;26(3):164–8. doi: https:// doi.org/10.1016/j.uroco.2016.06.004

  31. Zarante I, Franco L, López C, FernándezN. Frequencies of congenital malformations: assessment and prognosis of 52,744 births in three cities of Colombia. Biomédica. 2010;30(1):65–71. doi: https://doi. org/10.7705/biomedica.v30i1.154

  32. Turner HH. A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology. 1938;23(5):566–74.

  33. Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet. 1959;1(7075):711–3. doi: https://doi. org/10.1016/s0140-6736(59)91893-8

  34. Collin J. An introduction to Turner syndrome. Paediatr Nurs. 2006;18(10):38–43; quiz 44. doi: https://doi.org/10.7748/paed.18.10.38.s23

  35. Martin RH. Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online. 2008 Apr;16(4):523–31. doi: https://doi. org/10.1016/s1472-6483(10)60459-2

  36. Chuchracki M, Szczepaniak A, Sedziak A, Ziółkowska K, Opala T. [Frequency of prevalence of Turner syndrome in fetuses of patients referred to genetic amniocentesis in 2007-2011]. Przegl Lek. 2012;69(10):1011–4.

  37. Goecke C, García H. Actualización en el manejo del Síndrome de Turner en niñas y adolescentes. Revisión de la Literatura e Incorporación de Recomendaciones de las nuevas Guías Clínicas. Rev chil endocrinol diabetes. 2018;148–55.

  38. Bispo AVS, Dos Santos LO, Burégio-Frota P, Galdino MB, Duarte AR, Leal GF, et al. Effect of chromosome constitution variations on the expression of Turner phenotype. Genet Mol Res. 2013;12(4):4243–50. doi: https://doi. org/10.4238/2013.march.13.13

  39. Canto P, Kofman-Alfaro S, Jiménez AL, Söderlund D, Barrón C, Reyes E, et al. Gonadoblastoma in Turner syndrome patients with nonmosaic 45,X karyotype and Y chromosome sequences. Cancer Genet Cytogenet. 2004;150(1):70–2. doi:https://doi. org/10.1016/j.cancergencyto.2003.08.011

  40. Cabrol S, Saab C, Gourmelen M, Raux- Demay M, Le Bouc Y. Syndrome de Turner: croissance staturopondérale et maturation osseuse spontanées. Archives de Pédiatrie.1996 Apr 1;3(4):313–8. doi: https://doi. org/10.1016/0929693X(96)84683-5

  41. Castelo-Branco C. Management of Turner syndrome in adult life and beyond. Maturitas. 2014;79(4):471–5. doi: https://doi. org/10.1016/j.maturitas.2014.08.011

  42. Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development. Reproductive Biology and Endocrinology. 2009;7(1):59. doi: https://doi. org/10.1186/1477-7827-7-59

  43. Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet. 2001;2(1):59–67. doi: https://doi. org/10.1038/35047580

  44. Tsuchiya KD, Willard HF. Chromosomal domains and escape from X inactivation: comparative X inactivation analysis in mouse and human. Mamm Genome. 2000;11(10):849–54. doi: https://doi.org/10.1007/s003350010175

  45. Helena Mangs A, Morris B. The Human Pseudoautosomal Region (PAR): Origin, Function and Future. CG. 2007;8(2):129–36. doi: https://doi.org/10.2174/13892020778036814

  46. Bondy CA. Genomic imprinting in Turner syndrome. In: International Congress Series. Elsevier; 2006. p. 21–5.

  47. Kubota T, Wakui K, Nakamura T, Ohashi H, Watanabe Y, Yoshino M, et al. The proportion of cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X Turner syndrome females. CGR. 2002;99(1–4):276–84. doi: https://doi. org/10.1159/000071604

  48. De La Fuente R, Hahnel A, Basrur PK, King WA. X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biol Reprod. 1999 Mar;60(3):769–75. doi:https://doi. org/10.1095/biolreprod60.3.769

  49. Bejarano Ramírez N, Redondo Calvo FJ, Galán Gómez E. Complications related to Turner syndrome. Med Clin (Barc). 2017;149(1):39–40. doi: https://doi.org/10.1016/j. medcli.2017.02.016

  50. Ríos Orbañanos I, Vela Desojo A, Martinez- Indart L, Grau Bolado G, Rodriguez Estevez A, Rica Echevarria I. Turner syndrome: From birth to adulthood. Endocrinol Nutr. 2015 Dec 1;62(10):499–506. doi: https://doi. org/10.1016/j.endoen.2015.11.011

  51. Klinefelter Hf Jr, Reifenstein Ec Jr, Albright F Jr. Syndrome Characterized by Gynecomastia, Aspermatogenesis without A-Leydigism, and Increased Excretion of Follicle-Stimulating Hormone1. The Journal of Clinical Endocrinology & Metabolism. 1942;2(11):615–27. doi: https:// doi.org/10.1210/jcem-2-11-615

  52. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88(2):622–6. doi: https://doi. org/10.1210/jc.2002-021491

  53. Thomas NS, Hassold TJ. Aberrantrecombination and the origin of Klinefelter syndrome. Human Reproduction Update. 2003;9(4):309–17. doi: https://doi.org/10.1093/humupd/dmg028

  54. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364(9430):273–83. doi: https://doi. org/10.1016/s0140-6736(04)16678-6

  55. Ottesen AM, Aksglaede L, Garn I, Tartaglia N, Tassone F, Gravholt CH, et al. Increased Number of Sex Chromosomes Affects Height in a Nonlinear Fashion: A Study of 305 Patients With Sex Chromosome Aneuploidy. Am J Med Genet A. 2010;152A(5):1206–12. doi: https:// doi.org/10.1002/ajmg.a.33334

  56. Navarro-Cobos MJ, Balaton BP, Brown CJ.Genes that escape from X-chromosomeinactivation: Potential contributors to Klinefelter syndrome. Am J Med Genet C Semin Med Genet. 2020 Jun;184(2):226–38. doi: https://doi.org/10.1002/ajmg.c.31800

  57. Rappold GA, Durand C, Decker E, Marchini A, Schneider KU. New roles of SHOX as regulator of target genes. Pediatr Endocrinol Rev. 2012;9 Suppl 2:733–8.

  58. Aszpis S, Gottlieb S, Knoblovits P, Pacenza N, Pasqualini T, Rey R, et al. Síndrome de Klinefelter: Viejos y nuevos conceptos. Rev Argent Endocrinol Metab. 2006;43(1):22–39.

  59. Radicioni AF, Ferlin A, Balercia G, Pasquali D, Vignozzi L, Maggi M, et al. Consensus statement on diagnosis and clinical management of Klinefelter syndrome. Journal of endocrinological investigation. 2010;33(11):839–50. doi: https://doi. org/10.1007/bf03350351

  60. Giltay JC, Maiburg MC. Klinefelter syndrome: clinical and molecular aspects. Expert Rev Mol Diagn. 2010;10(6):765–76. doi: https://doi. org/10.1586/erm.10.63

  61. Sawalha AH, Harley JB, Scofield RH. Autoimmunity and Klinefelter’s syndrome: When men have two X chromosomes. Journal of Autoimmunity. 2009;33(1):31–4. doi: https:// doi.org/10.1016/j.jaut.2009.03.006

  62. Nielsen J. Diabetes mellitus in patients with aneuploid chromosome aberrations and in their parents. Humangenetik. 1972;16(1):165–70. doi: https://doi.org/10.1007/bf00394004

  63. Swerdlow AJ, Schoemaker MJ, Higgins CD, Wright AF, Jacobs PA, UK Clinical Cytogenetics Group. Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. J Natl Cancer Inst. 2005 Aug 17;97(16):1204–10. doi: https://doi.org/10.1093/jnci/dji240

  64. Hasle H, Mellemgaard A, Nielsen J, HansenJ. Cancer incidence in men with Klinefeltersyndrome. Br J Cancer. 1995;71(2):416–20. doi: https://doi.org/10.1038/bjc.1995.85

  65. Arai N, Homma M, Abe M, Baba Y, Murai S, Watanuki M, et al. Impact of CD123 expression, analyzed by immunohistochemistry, on clinical outcomes in patients with acute myeloid leukemia. Int J Hematol. 2019;109(5):539–44. doi: https:// doi.org/10.1007/s12185-019-02616-y

  66. Potter N, Jones L, Blair H, Strehl S, Harrison CJ, Greaves M, et al. Single-cell analysis identifies CRLF2 rearrangements as both early and late events in Down syndrome and non-Down syndrome acute lymphoblastic leukaemia. Leukemia. 2019 Apr;33(4):893–904. doi: https://doi.org/10.1038/s41375-018-0297-4

  67. Messina MF, Sgrò DL, Aversa T, Pecoraro M, Valenzise M, De Luca F. A characteristic cognitive and behavioral pattern as a clue to suspect Klinefelter syndrome in prepubertal age. J Am Board Fam Med. 2012;25(5):745–9. doi: https://doi.org/10.3122/jabfm.2012.05.110232

  68. Ross JL, Roeltgen DP, Kushner H, Zinn AR, Reiss A, Bardsley MZ, et al. Behavioral and social phenotypes in boys with 47, XYY syndrome or 47,XXY Klinefelter syndrome. Pediatrics. 2012;129(4):769–78. doi: https:// doi.org/10.1542/peds.2011-0719

  69. Vawter MP, Harvey PD, DeLisi LE. Dysregulation of X-linked gene expression in Klinefelter’s syndrome and association with verbal cognition. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2007;144B(6):728–34. doi: https://doi. org/10.1002/ajmg.b.30454

  70. Hong DS, Reiss AL. Cognitive and neurological aspects of sex chromosome aneuploidies. The Lancet Neurology. 2014;13(3):306– 18. doi: https://doi.org/10.1016/s1474- 4422(13)70302-8

  71. Viana J, Pidsley R, Troakes C, Spiers H, Wong CC, Al-Sarraj S, et al. Epigenomic and transcriptomic signatures of a Klinefelter syndrome (47,XXY) karyotype in the brain. Epigenetics. 2014 Apr;9(4):587–99. doi: https://doi.org/10.4161/epi.27806

  72. Pohl E, Muschal S, Kliesch S, Zitzmann M, Rohayem J, Gromoll J, et al. Molecular Aging Markers in Patients with Klinefelter Syndrome. Aging Dis. 2019;11(3):470–6. doi: https://doi. org/10.14336/ad.2019.0801

  73. Mondal S, Bhattacharjee R, Chowdhury S, Mukhopadhyay S. Heterogeneity of Karyotypes in Turner Syndrome. Indian J Pediatr. 2021;88(2):175–175. doi: https://doi. org/10.1007/s12098-020-03410-z

  74. El-Mansoury M, Barrenäs M-L, Bryman I, Hanson C, Larsson C, Wilhelmsen L, et al. Chromosomal mosaicism mitigates stigmata and cardiovascular risk factors in Turner syndrome. Clin Endocrinol (Oxf). 2007;66(5):744– 51. doi: https://doi.org/10.1111/j.1365- 2265.2007.02807.x

  75. Álvarez-Nava F, Lanes R. Epigenetics in Turner syndrome. Clinical Epigenetics. 2018;10(1):45. doi: https://doi.org/10.1186/s13148-018-0477-0

  76. Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MRF, et al. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. The American Journal of Human Genetics. 2015;97(2):343–52. doi: https://doi.org/10.1016/j.ajhg.2015.07.004

  77. Sharma D, Jankowsky E. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Critical Reviews in Biochemistry and Molecular Biology. 2014;49(4):343–60. doi: https://doi.org/10.310 9/10409238.2014.931339

  78. Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, et al.Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49(1):10–6. doi: https://doi. org/10.1038/ng.3726

  79. Gibbons R. Alpha thalassaemia-mental retardation, X linked. Orphanet Journal of Rare Diseases. 2006 May 4;1(1):15. doi: https://doi. org/10.1186/1750-1172-1-15

  80. Zitzmann M, Bongers R, Werler S, Bogdanova N, Wistuba J, Kliesch S, et al. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):E518-523. doi: https://doi. org/10.1210/jc.2014-2780

  81. Viuff M, Skakkebaek A, Nielsen MM, Chang S, Gravholt CH. Epigenetics and genomics in Turner syndrome. Am J Med Genet C Semin Med Genet. 2019;181(1):68–75. doi: https:// doi.org/10.1002/ajmg.c.31683

  82. Chen D, Camponeschi A, Wu Q, Gerasimcik N, Li H, Shen X, et al. CD99 expression is strongly associated with clinical outcome in children with B-cell precursor acute lymphoblastic leukaemia. BritishJournalof Haematology. 2019;184(3):418– 23. doi: https://doi.org/10.1111/bjh.15683

  83. Perrault I, Hamdan FF, Rio M, Capo- Chichi J-M, Boddaert N, Décarie J-C, et al. Mutations in DOCK7 in Individuals with Epileptic Encephalopathy and Cortical Blindness. The American Journal of Human Genetics. 2014;94(6):891–7. doi: https://doi. org/10.1016/j.ajhg.2014.04.012

  84. Panula S, Kurek M, Kumar P, Albalushi H, Padrell Sánchez S, Damdimopoulou P, et al. Human induced pluripotent stem cells from two azoospermic patients with Klinefelter syndrome show similar X chromosome inactivation behavior to female pluripotent stem cells. Human Reproduction. 2019;34(11):2297–310. doi: https://doi.org/10.1093/humrep/dez134




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Mex Urol. 2022;82