medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

Next >>

Revista Cubana de Informática Médica 2021; 13 (2)

Statistical monitoring and control tools for infectious diseases: Case of COVID-19 in Cuba

Enrique HFM, Peña AM
Full text How to cite this article

Language: Spanish
References: 8
Page:
PDF size: 755.51 Kb.


Key words:

statistical control, control charts, attributes, covid-19.

ABSTRACT

In the control of infectious diseases it is essential to use epidemiological models; however, there are tools that allow monitoring and statistical control of the transmission of this type of disease over time. The objective of this research work was to provide an analysis of the daily dynamics of COVID-19 transmission in Cuba through two control charts, based on a probabilistic model based on the binomial and Poisson distributions. The two methods were applied, using the daily reports published by the Ministry of Public Health, to a process whose variable under study is attributes type and with little information on its stability. The applied charts were key to improve the stability of the process, insofar as they were detected, identified and suggested the elimination of special causes to reduce the variation; and in monitoring to ensure that the improvements to be generated can be preserved.


REFERENCES

  1. Sánchez Valdés L, Sebrango Rodríguez CR, Vega Riverón B, Alfonso Berrio L. Modelos de trasmisión, pronóstico y gravedad del dengue [Internet]. En: Guzmán MG. Dengue. La Habana, Cuba: Editorial Ciencias Médicas (ECIMED); 2014 [citado 2020 jul 5]. Disponible en: Disponible en: https://www.bbs.sld.cu/libros/dengue/dengue_completo.pdf .

  2. Montesinos López OA, Hernández Suárez CM. Modelos matemáticos para enfermedades infecciosas. Salud Pública de Méx. 2007;49(3): 218-226.

  3. Organización Mundial de la Salud OMS. Preguntas y respuestas sobre la enfermedad por coronavirus (COVID-19) [Internet]. 2020. [citado 2020 jun 26]. Disponible en: Disponible en: https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public/q-a-coronaviruses .

  4. Díaz Pinzón JE. Uso de modelo predictivo para la dinámica de transmisión del Covid-19 en Colombia. Repert. Med. Cir. 2020;29(Supl.1):34-44. doi: https://doi.org/10.31260/RepertMedCir.01217372.1056.

  5. Gutiérrez Pulido H, de la Vara Salazar R. Control estadístico de la calidad y Seis Sigma. 3 ed. México, D. F.: McGraw-Hill/Interamericana Editores, 2013.

  6. Castellanos Vázquez J, Santiago Moreno A, Bouza Herrera C, Sautto Vallejo JM, Armas Rojas NB. Sobre el tamaño de muestra para un estudio de la prevalencia de enfermedades coronaria [reporte técnico en Internet]. 2020. [citado 2020 oct 3]. doi: https://doi.org/10.13140/RG.2.2.25499.69921.

  7. Vidal Ledo MJ, Guinovart Díaz R, Baldoquín Rodríguez W, Valdivia Onega NC, Morales Lezca W. Modelos matemáticos para el control epidemiológico. Educación Médica Superior. 2020;34(2): 1-15. [citado 2020 oct 3] Disponible: Disponible: http://www.ems.sld.cu/index.php/ems/article/view/2387

  8. Wang W. Backward bifurcation of an epidemic model with treatment. Mathematical Biosc. 2006;201(1-2): 58-71[citado 2020 oct 3]. doi: https://doi.org/10.1016/j.mbs.2005.12.022.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2021;13