medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Revista Cubana de Informática Médica 2021; 13 (2)

Influence of Interpolation on the Quality of Cell Microscopy Images

Coca RA, Lorenzo GJV
Full text How to cite this article

Language: Spanish
References: 12
Page:
PDF size: 604.48 Kb.


Key words:

quality of digital images cell microscopy, digital image interpolation methods cell microscopy, resolution of digital images.

ABSTRACT

The present work has the purpose of analyzing, for the particular case of cell microscopy images of erythrocytes from human blood, to what extent the application of interpolation methods to improve the image resolution can influence the image quality and with which methods satisfactory results might be obtained. Three interpolation methods were applied for their comparison to the selected color images: cubic splines, bicubic and bilinear and their computational efficiency was also evaluated. Two resolution reduction factors (2 and 4) were used for rows and columns of the digital image. The measures used to assess the quality of the interpolated images were the signal-to-noise ratio and the mean square error, whose values were statistically processed using the Friedman and Wilcoxon tests, the latter as a post-hoc test. The results make it possible to recommend the bicubic interpolation method as the most favorable for this type of images since it was the one with the best performance among those used.


REFERENCES

  1. González RC, Woods RE. Digital image processing. 4 ed. England: Pearson Education Inc; 2018.

  2. Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB. 3rd ed. USA: Gatesmark Publishing; 2020.

  3. Russ JC. The image processing handbook. 6th ed. USA: CRC Press; 2011.

  4. Pratt WK. Digital Image Processing: PIKS Inside. Third Edition ed. USA: John Wiley & Sons; 2001.

  5. Sung Cheol P, Min Kyu P, Moon Gi K. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine. 2003 May;20(3).

  6. Oppenheim AV, Schafer RW, Buck JR. Discrete-time signal processing. 3rd ed. USA: Prentice Hall; 2009.

  7. Proakis JG, Manolakis DG, del Rio VS, Castro JLA. Tratamiento digital de señales: USA: Prentice Hall; 2000.

  8. Ichihashi T, et al. Atlas of Hematology. Japan: Nagoya University School of Medicine; 1996 Dec [cited 2021 Mar 19]. Available from: http://www3.med.unipmn.it/did/will/atlashem/index.htm.

  9. The MathWorks Group. Image Processing Toolbox For Use with MATLAB. User's Guide Version 3. USA: The MathWorks Inc; 2001 [cited 2021 Mar 19]. 775 p. Available from: https://cis.temple.edu/~latecki/Courses/CIS581-02/MatCIS581-02/Matlab_images_tb.pdf#G4.2178.

  10. Rosenberger C, Chabrier S, Laurent H, Emile B. Unsupervised and supervised image segmentation evaluation. In: Advances in image and video segmentation. USA: IGI Global; 2006 [cited 19 Mar 2021]. 365-93. Available from: https://www.researchgate.net/profile/Christophe-Rosenberger/publication/257365161_Unsupervised_and_Supervised_Image_Segmentation_Evaluation/links/02e7e53597053b83f6000000/Unsupervised-and-Supervised-Image-Segmentation-Evaluation.pdf.

  11. Walpole RE, Myers RH, Myers SL, Ye K. Probabilidades y estadística para ingeniería y ciencias. 9na ed. México: Pearson Educación; 2012 [cited 19 Mar 2021]. p. 816. Disponible en: https://vereniciafunez94hotmail.files.wordpress.com/2014/08/8va-probabilidad-y-estadistica-para-ingenier-walpole_8.pdf.

  12. Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research. 2006;7:1-30.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2021;13