medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Revista Cubana de Informática Médica 2021; 13 (2)

Intrusion-detection systems for healthcare institutions’ data networks

Perdigón LR, Orellana GA
Full text How to cite this article

Language: Spanish
References: 41
Page:
PDF size: 548.29 Kb.


Key words:

IDS, computer security, computer systems, computer communication networks.

ABSTRACT

The use of digital technologies in medical institutions allows to improve the quality of health services. However, its use increases the vulnerabilities and security risks of these organizations. Currently, digital systems in the health sector represent an attractive target for cyber-criminals because they constitute poorly protected sources of valuable information. The study of the literature made it possible to identify a lack of research aimed at increasing security in health institutions data networks. The objective of this research is to carry out a literature review on the main open source Intrusion Detection Systems currently existing to strengthen security in the data networks of these organizations. The superiority of Snort and Suricata as open source tools for intrusion detection in data networks was identified.


REFERENCES

  1. Ioana D, Dumitrache I. Cyber Security in Healthcare Networks. 6th IEEE International Conference on E-Health and Bioengineering - EHB 2017 [Internet]. Sinaia, Romania: IEEE, 2017 [citado 15 Nov 2020], p. 414-417. Disponible en: Disponible en: https://doi.org/10.1109/EHB.2017.7995449

  2. Rodríguez A, Vidal MJ, Cuellar A, Martínez BD, Cabrera YM. Desarrollo de la informatización en Hospitales. INFODIR [Internet]. 2015 [citado 15 Nov 2020]; 21:3-15. Disponible en: Disponible en: http://www.revinfodir.sld.cu/index.php/infodir/article/view/121/177

  3. Coventry L, Branley D. Cybersecurity in healthcare: A narrative review of trends, threats and ways forward. Maturitas [Internet]. 2018 [citado 12 Nov 2020]; 113: 48-52. Disponible en: https://doi.org/10.1016/j.maturitas.2018.04.008

  4. García G, Vidal MJ. La informática y la seguridad. Un tema de importancia para el directivo. INFODIR [Internet]. 2016 [citado 15 Nov 2020]; 22:47-58. Disponible en: Disponible en: http://www.revinfodir.sld.cu/index.php/infodir/article/view/177

  5. Jalali MS, Kaiser JP. Cybersecurity in Hospitals: A Systematic, Organizational Perspective. Journal of Medical Internet Research [Internet]. 2018 [citado 13 Nov 2020]; 20(5): e10059. Disponible en: https://doi.org/10.2196/10059

  6. Ahmed M, Barkat A. False Data Injection Attacks in Healthcare. En: Data Mining. AusDM 2017. Communications in Computer and Information Science [Internet]. Singapore: Boo Y., Stirling D., Chi L., Liu L., Ong KL., Williams G. (eds), Springer, 2018 [citado 17 Nov 2020], 845, p. 192-202. Disponible en: https://doi.org/10.1007/978-981-13-0292-3_12

  7. Abraham C, Chatterjee D, Sims R. Muddling through cybersecurity: Insights from the U.S. healthcare industry. Business Horizons [Internet]. 2019 [citado 19 Nov 2020]; 62: 539-548. Disponible en: https://doi.org/10.1016/j.bushor.2019.03.010

  8. Barad M. Linking Cyber Security Improvement Actions in Healthcare Systems to Their Strategic Improvement Needs. Procedia Manufacturing [Internet]. 2019 [citado 9 Nov 2020]; 39: 279-286. Disponible en: https://doi.org/10.1016/j.promfg.2020.01.335

  9. Bhuyan SS, Kabir U, Escareno JM, Ector K, Palakodeti S, Wyant D, et al. Transforming Healthcare Cybersecurity from Reactive to Proactive: Current Status and Future Recommendations. Journal of Medical Systems [Internet]. 2020 [citado 19 Nov 2020]; 44(98): 1-9. Disponible en: https://doi.org/10.1007/s10916-019-1507-y

  10. Sánchez-Henarejos A.; Fernández-Alemán J. L.; Toval A.; Hernández-Hernández I.; Sánchez-García AB; Carrillo de Gea J.M. Guía de buenas prácticas de seguridad informática en el tratamiento de datos de salud para el personal sanitario en atención primaria. Atención Primaria [Internet]. 2014 [citado 15 Nov 2020]; 46(4):214-222. Disponible en: http://dx.doi.org/10.1016/j.aprim.2013.10.008

  11. World Economic Forum. (2020). The Global Risks Report 2020 15thEdition [Internet] [citado 30 Oct 2020]. Disponible en: Disponible en: http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

  12. Sethuraman SC, Vijayakumar V, Walczak S. Cyber Attacks on Healthcare Devices Using Unmanned Aerial Vehicles. Journal of Medical Systems [Internet]. 2020 [citado 14 Nov 2020]; 44(29): 1-10. Disponible en: https://doi.org/10.1007/s10916-019-1489-9

  13. Jalali MS, Razak S, Gordon W, Perakslis E, Madnick S. Health Care and Cybersecurity: Bibliometric Analysis of the Literature. Journal of Medical Internet Research [Internet]. 2019 [citado 11 Nov 2020]; 21(2): e12644. Disponible en: https://doi.org/10.2196/12644

  14. Guerrero J. Diseño e implementación de un sistema de monitoreo a la red de datos de entidad prestadora del servicio de salud [tesis de maestría]. Colombia: Universidad Nacional Abierta y a Distancia; 2020. [citado 16 Nov 2020]; 100 p. Disponible en: Disponible en: https://repository.unad.edu.co/handle/10596/34999

  15. Mahamat S, Flauzac O, Nolot F, Rabat C, Gonzalez C. Secure Exchanges Activity in Function of Event Detection with the SDN. En: e-Infrastructure and e-Services for Developing Countries. AFRICOMM 2018, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering [Internet]. Dakar, Senegal: Mendy G., Ouya S., Dioum I., Thiaré O. (eds), Springer, 2019 [citado 17 Nov 2020], 275, p. 315-324. Disponible en: https://doi.org/10.1007/978-3-030-16042-5_28

  16. Socarrás HE, Santana I. Ciberseguridad del Sistema de Control Industrial de la Planta Cloro-Sosa ELQUIM. Revista lbérica de Sistemas y Tecnologías de Información [Internet]. 2019 [citado 17 Nov 2020]; 32: 83-96. Disponible en: http://dx.doi.org/10.17013/risti.32.83-96

  17. Maniriho P, Jovial L, Niyigaba E, Bizimana Z, Ahmad T. Detecting Intrusions in Computer Network Traffic with Machine Learning Approaches. International Journal of Intelligent Engineering and Systems, 2020, 13(3): 433-445. Disponibe en: https://doi.org/10.22266/ijies2020.0630.39

  18. Aludhilu H, Rodríguez-Puente RA. Systematic Literature Review on Intrusion Detection Approaches. Revista Cubana de Ciencias Informáticas [Internet]. 2020 [citado 20 Nov 2020]; 14(1): p. 58-78. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2227-18992020000100058&lng=es&nrm=iso&tlng=en

  19. Castellanos O, García M. Análisis y caracterización de conjuntos de datos para detección de intrusiones. Serie Científica de la Universidad de las Ciencias Informáticas [Internet]. 2020 [citado 16 Nov 2020]; 13(4): 39-52. Disponible en: Disponible en: https://publicaciones.uci.cu/index.php/serie/article/view/558

  20. Wang X, Kordas A, Hu L, Gaedke M, Smith D. Administrative Evaluation of Intrusion Detection System. En: 2nd Annual Conference on Research in Information Technology [Internet]. Florida, USA: Association for Computing Machinery, 2013 [citado 17 Nov 2020], p. 47-52. Disponible en: https://doi.org/10.1145/2512209.2512216

  21. Murphy B. Comparing the performance of intrusion detection systems: snort and suricata [tesis de doctorado]. EEUU: Colorado Technical University; 2019.

  22. Perdigón R, Ramírez R. Plataformas de software libre para la virtualización de servidores en pequeñas y medianas empresas cubanas. Revista Cubana de Ciencias Informáticas [Internet]. 2020 [citado 18 Nov 2020]; 14(1): 40-57. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992020000100040&lng=es&nrm=iso&tlng=es

  23. Perdigón R, Pérez MT. Análisis holístico del impacto social de los negocios electrónicos en América Latina, de 2014 a 2019. Paakat: Revista de Tecnología y Sociedad [Internet]. 2020 [citado 27 Nov 2020]; 10(18). Disponible en: http://dx.doi.org/10.32870/Pk.a10n18.459

  24. Macia-Fernández G, Camacho J, Magan-Carrión R, Fuentes-García M, García-Teodoro P. UGR’16: Un nuevo conjunto de datos para la evaluación de IDS de red. En: XIII Jornadas de Ingeniería Telemática [Internet]. Valencia, España: Editorial Universidad Politécnica de Valencia, 2017 [citado 18 Nov 2020], p. 71-78. Disponible en: http://dx.doi.org/10.4995/JITEL2017.2017.6520

  25. Arteaga JE. Evaluación de las funcionalidades de los sistemas de detección de intrusos basados en la red de plataformas Open Source utilizando la técnica de detección de anomalías [tesis de maestría]. Ecuador: Escuela Superior Politécnica de Chimborazo; 2018. [citado 3 Nov 2020]; 162 p. Disponible en: Disponible en: http://dspace.espoch.edu.ec/handle/123456789/8748

  26. Kumar D, Singh RA. Comprehensive Review on Intrusion Detection System and Techniques. En: International Conference on Contemporary Technological Solutions towards fulfilment of Social Needs [Internet]. India: SHODH SANGAM, 2018 [citado 21 Nov 2020]; p. 133-137. Disponible en: Disponible en: http://www.shodhsangam.rkdf.ac.in/papers/suvenir/133-137-Dharmendra.pdf

  27. Divekar A, Parekh M, Savla V, Mishra R, Shirole M. Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives. En: 3rd International Conference on Computing, Communication and Security (ICCCS) [Internet]. Kathmandu, Nepal: IEEE, 2018 [citado 9 Nov 2020], p. 1-8. Disponible en: https://doi.org/10.1109/CCCS.2018.8586840

  28. Ashok D, Manikrao V. Comparative Study and Analysis of Network Intrusion Detection Tools. En: International Conference on Applied and Theoretical Computing and Communication Technology [Internet]. Davangere, India: IEEE, 2015 [citado 9 Nov 2020], p. 312-315. Disponible en: https://doi.org/10.1109/ICATCCT.2015.7456901

  29. Ocampo CA, Castro YV; Solarte Martínez GR. Sistema de detección de intrusos en redes corporativas. Scientia et Technica [Internet]. 2017 [citado 4 Nov 2020]; 22(1): 60-68. Disponible en: https://doi.org/10.22517/23447214.9105

  30. Park W, Ahn S. Performance Comparison and Detection Analysis in Snort and Suricata Environment. Wireless Pers Commun [Internet]. 2017 [citado 21 Nov 2020]; 94, 241-252. Disponible en: https://doi.org/10.1007/s11277-016-3209-9

  31. Raza SA, Issac B Performance comparison of intrusion detection systems and application of machine learning to Snort system. Future Generation Computer Systems [Internet]. 2018 [citado 20 Nov 2020]; 80: 157-170. Disponible en: https://doi.org/10.1016/j.future.2017.10.016

  32. G2 Crowd.com [página Web en Internet]. Best Intrusion Detection and Prevention Systems (IDPS), 2020. < https://www.g2.com/categories/intrusion-detection-and-prevention-systems-idps?utf8=%E2%9C%93&selected_view=grid#grid > [consultado 21 Nov 2020]

  33. Karim I, Vien QT, Anh Le T, Mapp G. A Comparative Experimental Design and Performance Analysis of Snort-Based Intrusion Detection System in Practical Computer networks. Computers [Internet]. 2017 [citado 21 Nov 2020]; 6(1): 1-15. Disponible en: https://doi.org/10.3390/computers6010006

  34. Uvidia LA. Evaluación de herramientas de generación de tráfico malicioso aplicadas a una red ip virtualizada [tesis de maestría]. España: Universidad Politécnica de Valencia; 2017. [citado 21 Nov 2020]; 40 p.

  35. Bouziani O, Benaboud H, Samir Chamkar A, Lazaar SA. Comparative study of Open Source IDSs according to their Ability to Detect Attacks. En: 2nd International Conference on Networking, Information Systems & Security [Internet]. Rabat, Marruecos: Association for Computing Machinery, 2019 [citado 21 Nov 2020]; p. 1-5. Disponible en: https://doi.org/10.1145/3320326.3320383

  36. Alsakran F, Bendiab G, Shiaeles S, Kolokotronis N. (2020) Intrusion Detection Systems for Smart Home IoT Devices: Experimental Comparison Study. En: Security in Computing and Communications 2019 [Internet]. Singapore: Thampi S., Martinez Perez G., Ko R., Rawat D. (eds), Springer, 2020 [citado 21 Nov 2020]; 1208. Disponible en: https://doi.org/10.1007/978-981-15-4825-3_7

  37. Caro R. Despligue y explotación de herramientas Open Source para la monitorización y gestión de eventos en un entorno virtualizado [tesis de maestría]. España: Universidad de Cádiz; 2020. [citado 21 Nov 2020]; 382 p.

  38. Farré X. Desplegar la herramienta "ZeekIDS" y su posterior explotación para el análisis de actividades sospechosas en la red [tesis de maestría]. España: Universitat Oberta de Catalunya; 2019. [citado 21 Nov 2020]; 124 p.

  39. Alyousef MY; Abdelmajeed NT Dynamically Detecting Security Threats and Updating a Signature Based Intrusion Detection System’s Database. Procedia Computer Science [Internet]. 2019 [citado 22 Nov 2020]; 159: 1507-1516. Disponible en: https://doi.org/10.1016/j.procs.2019.09.321

  40. Hänninen, M. Open source intrusion detection systems evaluation for small and medium-sized enterprise environments [tesis de maestría]. Finlandia: JAMK University of Applied Sciences; 2019. [citado 22 Nov 2020]; 77 p.

  41. Interpol.int [página Web en Internet]. Cybercriminals targeting critical healthcare institutions with ransomware, 2020 < Cybercriminals targeting critical healthcare institutions with ransomware, 2020 https://www.interpol.int/News-and-Events/News/2020/Cybercriminals-targeting-critical-healthcare-institutions-with-ransomware > [consultado 18 Nov 2020].




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2021;13