medigraphic.com
SPANISH

Revista Cubana de Medicina Tropical

ISSN 1561-3054 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back

Rev Cubana Med Trop 2021; 73 (2)

COVID-19 severity in Sub-Saharan Africa and the systematic use of anti-malarial drugs

Fonte GL, Ginori GM, García MG, Sarmiento RME, Acosta DA
Full text How to cite this article

Language: English
References: 34
Page: 1-8
PDF size: 267.50 Kb.


Key words:

No keywords

Text Extraction

In the still close December 2019, an epidemic outbreak produced by a coronavirus, later named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), emerged among the population of the Chinese city of Wuhan. On February 11 of 2020, the World Health Organization (WHO) designated with the acronym COVID-19 (Coronavirus Disease of 2019) the disease caused by SARS-CoV-2. The wide spread of COVID-19 led the WHO to recognize it a pandemic on March 11, 2020.
At a global scale, the efforts to halt the propagation of the still-young pandemic, and its very adverse sanitary, economic and social consequences, have been unsuccessful. As of March 28, 2021, the SARS-CoV-2 infection has reached 190 countries on all continents, leaving the unfortunate footprint of 126 372 442 infected people and 2 769 696 deaths.


REFERENCES

  1. World Health Organization. Coronavirus press conference, 11 February 2020. Geneva: WHO; 2020 [acceso: 16/02/2021]. Disponible en: Disponible en: https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-emergencies-coronavirus-full-press-conference-11feb 2020-final.pdf?sfvrsn=e2019136_2

  2. World Health Organization. Virtual press conference on COVID-19, 11 March 2020. Geneva: WHO; 2020 [acceso: 16/02/2021]. Disponible en: Disponible en: https://www.who.int/docs/defaultsource/coronaviruse/transcripts/who-audio-emergencies-coronavirus-fullpress-conference-11feb2020-final.pdf?sfvrsn=e2019136_2

  3. World Health Organization. Coronavirus disease 2019 (COVID-19): Weekly Epidemiological Update, 28 March 2021. Geneva: WHO; 2020 [acceso: 30/03/2021]. Disponible en: Disponible en: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20210330_weekly_epi_update_33.pdf

  4. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269-70. DOI: https://doi.org/10.1038/s41577-020-0308-3

  5. Mbow M, Lell B, Jochems SP, Cisse B, Mboup S, Dewals DG, et al. COVID-19 in Africa: Dampening the storm? Science. 2020;369:624-26. Doi: https://doi.org/10.1126/science.abd3902

  6. Napoli P, Nioi M. Global spread of Coronavirus Disease 2019 and Malaria: An epidemiological paradox in the early stage of a pandemic. J Clin Med. 2020;9:1138. DOI: https://doi.org/10.3390/jcm9041138

  7. Haider N, Yavlinsky A, Simons D. Passengers' destinations from China: low risk of novel coronavirus (2019-nCoV) transmission into Africa and South America. Epidemiol Infect. 2020;148:e41. DOI: https://doi.org/10.1017/S0950268820000424

  8. Diop BZ, Ngom M, Pougué Biyong C, Pougué Boyong JN. The relatively young and rural population may limit the spread and severity of COVID-19 in Africa: a modelling study. BMJ Glob Health. 2020;5:e002699. DOI: https://doi.org/10.1136/bmjgh-2020-002699

  9. Cao Y, Li L, Feng Z. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:11. DOI: https://doi.org/10.1038/s41421-020-0147-1

  10. Yang X, Dong N, Wai-Chi Chan E, Chen S. Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries. Emerg Microb Infect. 2020;9:1287-99. DOI: https://doi.org/10.1080/22221751.2020.1773745

  11. Ahmed S, Quadeer A, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV Immunological Studies. Viruses. 2020;12:254. https://doi.org/10.3390/v12030254

  12. Grifoni A, Weiskopf D. Ramirez SI. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181:1489-501. DOI: https://doi.org/10.1016/j.cell.2020.05.015

  13. Gursel M, Gursel I. Is global BCG vaccination- induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy 2020; 75:1815-19. DOI: https://doi.org/10.1111/all.14345

  14. Acosta A, Fonte L, Sarmiento ME, Norazmi MN. Does our Mycobacteriome Influence COVID-19 Morbidity and Lethality? Front Microbiol. 2021;12:589165. DOI: https://doi.org/10.3389/fmicb.2021.589165

  15. Fonte L, Acosta A, Sarmiento ME, Ginori M, García G, Norazmi MN. COVID-19 lethality in Sub-Saharan Africa and helminth immune modulation. Front Immunol. 2020;11. DOI: https://doi.org/10.3389/fimmu.2020.574910

  16. World Health Organization. World malaria report, 2018 [acceso: 16/02/2021]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf

  17. Abena P, Decloedt E, Bottieau E, Suleman F, Adejumo P, Sam-Agudu N, et al. Chloroquine and Hydroxychloroquine for the Prevention or Treatment of COVID-19 in Africa: Caution for Inappropriate Off-label Use in Healthcare Settings. Am J Trop Med. Hyg. 2020;102:1184-8. DOI: https://doi.org/10.4269/ajtmh.20-0290

  18. Shah RR. Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing. J Clin Pharm Ther. 2021;46:17-27. DOI: https://doi.org/10.1111/jcpt.13267

  19. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020:105938. DOI: https://doi.org/10.1016/j.ijantimicag.2020.105938

  20. Golden EB, Cho HY, Hofman FM. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus. 2015;38:E12. Doi: https://doi.org/10.3171/2014.12.FOCUS14748

  21. Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a minireview. Clin Drug Investig. 2018;38:653-71. DOI: https://doi.org/10.1007/s40261-018-0656-y

  22. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020;20. DOI: https://doi.org/10.1093/jac/dkaa114

  23. Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, et al. Persistence of chloroquine resistance alleles in malaria endemic countries: A systematic review of burden and risk factors. Malar J. 2019;18. DOI: https://doi.org/10.1186/s12936-019-2716-z

  24. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine/hydroxychloroquine for COVID-19. J Crit Care. 2020;59:176-90. DOI: https://doi.org/10.1016/j.jcrc.2020.06.019

  25. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177. https://doi.org/10.1016/j.antiviral.2020.104762

  26. Gendrot M, Duflot I, Boxberger M, Delandre O, Jardot P, Le Bideau M. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J Infect Dis. 2020;99:447-54. DOI: https://doi.org/10.1016/j.ijid.2020.08.032

  27. Sargin G, Yavasoglu SI, Yavasoglu I. Is Coronavirus Disease 2019 (COVID-19) seen less in countries more exposed to Malaria? Medical Hypotheses. 2020;140. DOI: https://doi.org/10.1016/j.mehy.2020.109756

  28. Krishan K, Kanchan T. Novel Coronavirus (SARS-CoV-2) resistance in African populations: A cause worth exploring. Acta Biomed. 2020;91:e2020023. DOI: https://doi.org/10.23750/abm.v91i3.9872

  29. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2003;2:69. DOI: https://doi.org/10.1186/1743-422X-2-69

  30. Chatterjee P, Anand T, Singh KJ, Rasaily R, Singh R, Das S, et al. Healthcare workers & SARS-CoV-2 infection in India: A case-control investigation in the time of COVID-19. Indian J Med Res. 2020;151:459. DOI: https://doi.org/10.4103/ijmr.IJMR_2234_20

  31. Izoulet M. Countries which primarily use antimalarial drugs as COVID-19 treatment see slower dynamic of daily deaths. April 14, 2020. DOI: https://doi.org/10.2139/ssrn.3575899

  32. Eastman R, Fidock D. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol. 2009;7:764-74. DOI: https://doi.org/10.1038/nrmicro2239

  33. Gentry C, Humphrey M, Thind S, Hendrickson S, Kurdgelashvili G, Williams R. Long-term hydroxychloroquine use in patients with rheumatic conditions and development of SARS-CoV-2 infection: a retrospective cohort study. Lancet Rheumatol. 2020;2:e689-97. DOI: https://doi.org/10.1016/S2665-9913(20)30305-2

  34. Lee Z, Rayner C, Forrest J, Nachega J, Senchaudhuri E, Mills E. The rise and fall of hydroxychloroquine for the treatment and prevention of COVID-19. Am J Trop Med Hyg. 2021;104:35. DOI: https://doi.org/10.4269/ajtmh.20-1320




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Med Trop. 2021;73