medigraphic.com
SPANISH

Archivos de Medicina

Archivos de Medicina (Manizales)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Arch Med 2021; 21 (2)

Diagnostic differences in pre and post-operative electroencephalography tracings in children after cardiac surgery in a reference institution in Bucaramanga (Colombia)

Moreno-Chacón José-Luis, Villamizar-Schiller Ives-Teófilo, Pardo-Cardozo Nathalia-Andrea, Bermon A, Zárate-Vergara Andrea-Carolina, Tirado-Pérez Irina-Suley
Full text How to cite this article

Language: Spanish
References: 49
Page: 347-357
PDF size: 735.94 Kb.


Key words:

heart diseases, electroencephalography, seizures, thoracic surgery.

ABSTRACT

Objective: to determine the presence of changes in the pre and postoperative electro-encephalographic diagnoses of children from zero to 18 years of age who underwent heart surgery in a reference institution in Colombia between the months of August to November of 2017. Materials and methods: electroencephalogram was taken one hour prior to the cardiac surgical procedure and another seven days after the procedure, clinical data were collected associated with the presence of abnormalities in the electroencephalogram. The data were subjected to descriptive, bivariate, and multivariate analysis. Results: changes in electroencephalographic traces were found from preoperative to postoperative in two ways, one with deterioration of normal to abnormal traces and the other with worsening of the abnormal tracing. Conclusions: patients are taken to surgery despite having altered paths. The population taken to cardiac surgery at the center of the study is very diverse, which causes varied neuro-logical results and influences changes in post-operative traces.


REFERENCES

  1. Mittnacht AJC, Rodriguez-Diaz C. Multimodal neu-romonitoring in pediatric cardiac nesthesia. Ann Card Anaesth. 2014; 17(1):25–32.DOI: 10.4103/0971-9784.124130

  2. Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002; 73(6):1752–1758.https://doi.org/10.1016/S0003-4975(02)03534-8

  3. Abend NS, Arndt DH, Carpenter JL, Chapman KE, Cornett KM, Gallentine WB, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology. 2013; 81(4):383–391.https://doi.org/10.1212/WNL.0b013e31829c5cfe

  4. Avila-Alvarez A, Gonzalez-Rivera I, Ferrer-Barba A, Portela-Torron F, Gonzalez-Garcia E, Fernandez-Trisac JL, et al. [Acute neurological complications after pediatric cardiac surgery: still a long way to go]. An Pediatr (Barc). 2012; 76(4):192–198.DOI: 10.1016/j.anpedi.2011.07.018

  5. Wagenman KL, Blake TP, Sanchez SM, Schultheis MT, Radcliffe J, Berg RA, et al. Electrographic status epilepticus and long-term outcome in criti-cally ill children. Neurology. 2014; 82(5):396–404. https://doi.org/10.1212/WNL.0000000000000082

  6. Shellhaas RA. Continuous long-term electroen-cephalography: the gold standard for neonatal seizure diagnosis.Semin Fetal Neonatal Med.2015; 20(3):149–153.DOI: 10.1016/j.siny.2015.01.005

  7. Gaynor JW, Jarvik GP, Gerdes M, Kim DS, Raja-gopalan R, Bernbaum J, et al. Postoperative elec-troencephalographic seizures are associated with deficits in executive function and social behaviors at 4 years of age following cardiac surgery in infancy.J Thorac Cardiovasc Surg.2013; 146(1):132–139.DOI: 10.1016/j.jtcvs.2013.04.002

  8. Andropoulos DB, Mizrahi EM, Hrachovy RA, Stayer SA, Stark AR, Heinle JS, et al. Electroencephalo-graphic seizures after neonatal cardiac surgery with high-flow cardiopulmonary bypass.Anesth Analg. 2010; 110(6):1680–1685.DOI: 10.1213/ane.0b013e3181dd5a58

  9. Schmitt B, Finckh B, Christen S, Lykkesfeldt J, Schmid ER, Bauersfeld U, et al. Electroencepha-lographic Changes after Pediatric Cardiac Surgery with Cardiopulmonary Bypass: Is Slow Wave Activity Unfavorable?. Pediatr Res. 2005; 58(4):771–778.https://doi.org/10.1203/01.PDR.0000180554.16652.4E

  10. Zarante I, Franco L, López C, Fernández N. [Fre-quencies of congenital malformations: assess-ment and prognosis of 52,744 births in three cities of Colombia]. Bioméd. 2010; 30(1):65–71.

  11. Baltaxe E, Zarante I. Prevalence of congenital heart disease in 44,985 newborns in Colombia.Arch Cardiol México. 2006; 76(3):263–268.

  12. González-González Y. Informe final del evento de anomalías congénitas hasta el periodo epi-demiológico 13 del año 2012. [Internet]. Bogotá, Instituto Nacional de Salud; 2012. Available from:https://www.ins.gov.co/buscador-eventos/Lineamien-tos/PRO_Defectos_congenitos.pdf

  13. Oliver-Ruiz JM, Mateos-García M, Bret-Zurita M. Evaluation of congenital heart disease in adults.Rev Esp Cardiol. 2003; 56(6):607–620.

  14. Pierpont ME, Basson CT, Benson DW, Gelb BD, Giglia TM, Goldmuntz E, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Com-mittee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):3015–3038.DOI: 10.1161/CIRCULATIONAHA.106.183056

  15. Departamento de ciencias neurofisiológicas-Univer-sidad Javeriana. Introducción a la Neuropsicofar-macología - Medicación Antiepiléptica. [Internet]. Clase de Neurofisiología. Available from: https://med.javeriana.edu.co/fisiologia/fw/c523.htm

  16. Abend NS, Dlugos DJ, Clancy RR. A review of long-term EEG monitoring in critically ill children with hypoxic-ischemic encephalopathy, congenital heart disease, ECMO, and stroke.J Clin Neuro-physiol. 2013; 30(2):134–142. DOI: 10.1097/WNP.0b013e3182872af9

  17. Barea-Navarro R. Electroencefalografía. Buenos Aires: Universidad de Alcalá; 2012.

  18. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical Electroencephalography for Anesthesiol-ogists: Part I: Background and Basic Signatures.Anesthesiology. 2015; 123(4):937–960. DOI: 10.1097/ALN.0000000000000841

  19. McQuillen PS, Barkovich AJ, Hamrick SEG, Perez M, Ward P, Glidden DV, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects.Stroke. 2007; 38(2 Suppl):736–741. DOI: 10.1161/01.str.0000247941.41234.90

  20. Mahle WT, Tavani F, Zimmerman RA, Nicolson SC, Galli KK, Gaynor JW, et al. An MRI study of neu-rological injury before and after congenital heart surgery.Circulation. 2002; 106(12 Suppl 1):I109–I114. DOI: 10.1161/01.cir.0000032908.33237.b1

  21. Marino BS. New concepts in predicting, evalu-ating, and managing neurodevelopmental out-comes in children with congenital heart disease. Curr Opin Pediatr. 2013; 25(5):574–584. DOI: 10.1097/MOP.0b013e328365342e

  22. Gaynor JW, Gerdes M, Nord AS, Bernbaum J, Zackai E, Wernovsky G, et al. Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy?. J Thorac Cardiovasc Surg. 2010; 140(6):1230–1237. DOI:10.1016/j.jtcvs.2010.07.069

  23. Amantini A, Carrai R, Lori S, Peris A, Amadori A, Pinto F, et al. Neurophysiological monitoring in adult and pediatric intensive care.Minerva Anes-tesiol. 2012; 78(9):1067–1075.

  24. Meyer S, Shatat M, Schäfers HJ, Shamdeen MG, Gortner L, Abdul-Khaliq H. Electroencephalogram in children undergoing cardiac surgery.Clin Neurophysiol. 2011; 122(9):1890–1891. https://doi.org/10.1016/j.clinph.2011.02.015

  25. Newburger JW, Jonas RA, Wernovsky G, Wypij D, Hickey PR, Kuban KC, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmo-nary bypass in infant heart surgery.N Engl J Med. 1993; 329(15):1057–1064. DOI: 10.1056/NEJM199310073291501

  26. Algra SO, Kornmann VNN, van der Tweel I, Schouten ANJ, Jansen NJG, Haas F. Increasing duration of circulatory arrest, but not antegrade cerebral perfusion, prolongs postoperative recovery after neonatal cardiac surgery.J Thorac Cardiovasc Surg. 2012; 143(2):375–382. DOI: 10.1016/j.jtcvs.2011.08.006

  27. Rappaport LA, Wypij D, Bellinger DC, Helmers SL, Holmes GL, Barnes PD, et al. Relation of sei-zures after cardiac surgery in early infancy to neurodevelopmental outcome. Circulation. 1998; 97(8):773–779. DOI: 10.1161/01.cir.97.8.773

  28. Extracorporeal Life support Organization. Extracor-poreal cardiopulmonary support in critical care.Ann Arbor: ELSO; 2012.

  29. Mizar-De la Hoz O. Factores de riesgo asociados a cardiopatía congénita moderada a severa en recién nacidos en Cartagena de Indias. Cartage-na: Universidad de Cartagena; 2014.

  30. Pampiglione G. Electroencephalographic and metabolic changes after surgical operations. The Lancet J. 1965; 286(7406):263–265. DOI: https://doi.org/10.1016/S0140-6736(65)92386-X

  31. Sotaniemi KA. Clinical and prognostic correlates of EEG in open-heart surgery patients.J Neurol Neurosurg Psychiatry. 1980; 43(10):941–947. DOI: 10.1136/jnnp.43.10.941

  32. Wernovsky G, Kuijpers M, Van-Rossem MC, Marino BS, Ravishankar C, Dominguez T, et al. Postopera-tive course in the cardiac intensive care unit fol-lowing the first stage of Norwood reconstruction.Cardiol Young. 2007;17(6):652–665. DOI: 10.1017/S1047951107001461

  33. Greer DM. Cardiac Arrest and Postanoxic En-cephalopathy. Continuum (Minneap Minn). 2015; 21(5 Neurocritical Care):1384–1396. DOI: 10.1212/CON.0000000000000223

  34. Bird GL, Jeffries HE, Licht DJ, Wernovsky G, Wein-berg PM, Pizarro C, et al. Neurological complica-tions associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease.Cardiol Young. 2008; 18(S2):234-239. DOI: 10.1017/S1047951108002977

  35. Estefanero-Meza J, Pinto-Torres D, Mamani-Huaman G, Moreno-Loaiza O. [Insufficient cardiovascular surgeries in children with congenital heart de-fects in Arequipa, Peru].Rev Peru Med Exp Salud Pública. 2013; 30(4):716–717.

  36. Fallon P, Aparício JM, Elliott MJ, Kirkham FJ. Inci-dence of neurological complications of surgery for congenital heart disease.Arch Dis Child. 1995; 72(5):418-422. DOI:10.1136/adc.72.5.418

  37. Wernovsky G, Shillingford AJ, Gaynor JW. Central nervous system outcomes in children with com-plex congenital heart disease.Curr Opin Cardiol. 2005; 20(2):94–99. DOI: 10.1097/01.hco.0000153451.68212.68

  38. Saldarriaga-Gil W, Ruiz-Murcia FA, Fandiño-Losada A, Cruz-Perea ME, Isaza de Lourido C. Evaluation of prenatal diagnosis of congenital anomalies diagnosable by prenatal ultrasound in patients in neonatal intensive care units of Cali, Colombia. Colomb Méd. 2014; 45(1):32–38. DOI: https://doi.org/10.25100/cm.v45i1.1332

  39. Ciccone O, Mathews M, Birbeck GL. Management of acute seizures in children: A review with special consideration of care in resource-limited set-tings. African J Emerg Med. 2017; 7(Suppl):S3–9. DOI: 10.1016/j.afjem.2017.09.003

  40. Ding Y, Li XY, Liu YP, Li DX, Song JQ, Li MQ, et al. [Psychomotor retardation and intermitent con-vulsions for 8 months in an infant].Zhongguo Dang Dai Er Ke Za Zhi. 2016; 18(1):67–71. DOI: 10.7499/j.issn.1008-8830.2016.01.014

  41. Dhandayuthapani G, Chakrabarti S, Ranasinghe A, Hunt L, Grant D, Martin RP, et al. Short-term out-come of infants presenting to pediatric intensive care unit with new cardiac diagnoses.Congenit Heart Dis. 2010; 5(5):444–449. DOI: 10.1111/j.1747-0803.2010.00430. x

  42. Brunberg JA, Reilly EL, Doty DB. Central nerv-ous system consequences in infants of cardiac surgery using deep hypothermia and circulatory arrest.Circulation. 1974; 50(2 Suppl): II60–1168.

  43. Galli KK, Zimmerman RA, Jarvik GP, Wernovsky G, Kuypers MK, Clancy RR, et al. Periventricular leu-komalacia is common after neonatal cardiac sur-gery. J Thorac Cardiovasc Surg. 2004;127(3):692–704. DOI: 10.1016/j.jtcvs.2003.09.053

  44. Licht DJ, Wang J, Silvestre DW, Nicolson SC, Montenegro LM, Wernovsky G, et al. Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects.J Thorac Cardiovasc Surg. 2004;128(6):841–9. DOI: 10.1016/j.jtcvs.2004.07.022

  45. Medoff-Cooper B, Naim M, Torowicz D, Mott A. Feeding, growth, and nutrition in children with con-genitally malformed hearts. Cardiol Young. 2010 Dec;20 Suppl 3:149–

  46. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect.Pediatr Cardiol. 2003; 24(5):436–443. DOI: 10.1007/s00246-002-0404-0

  47. Abend NS, Dlugos DJ, Clancy RR. A Review of Long-term EEG Monitoring in Critically Ill Chil-dren With Hypoxic–Ischemic Encephalopathy, Congenital Heart Disease, ECMO, and Stroke:J Clin Neurophysiol. 2013; 30(2):134–42. DOI: 10.1097/WNP.0b013e3182872af9

  48. Donis I, Mendoza S Informe institucional del servicio de cirugía cardiovascular pediátrica de la Fundación Cardiovascular de Colombia del año 2015 - Estadísticas. Bucaramanga:Fundación cardiovascular de Colombia; 2012.

  49. Peyvandi S, De Santiago V, Chakkarapani E, Chau V, Campbell A, Poskitt KJ, et al. Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury.JAMA Pediatr. 2016; 170(4):1-16. DOI:10.1001/jamapediatrics.2015.4450




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Med. 2021;21