medigraphic.com
SPANISH

Correo Científico Médico de Holguín

ISSN 1560-4381 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 3

<< Back Next >>

Correo Científico Médico 2021; 25 (3)

COVID-19 and relative humidity in regions of China and Ecuador

Expósito LA, Durán GL, Gómez LB, Díaz AMT
Full text How to cite this article

Language: Spanish
References: 28
Page:
PDF size: 844.20 Kb.


Key words:

coronavirus, COVID-19, relative humidity, correlation.

ABSTRACT

Introduction: The emergence of a new coronavirus in the city of Wuhan, December 2019, has alarmed the authorities of the World Health Organization due to its rapid spread and its complications in different scenarios.
Objective: To analyze the behavior of relative humidity and its connection with new COVID-19 cases detected in some regions of China and Ecuador.
Method: An observational and analytical methodology was applied on climatological and epidemiological data, obtained through the Weather Online and Statistics Web sites from various regions (Ecuador and the Province of Hubei). The data were processed in the statistical program IBM SPSS Statistics, calculating the maximum, minimum, median and average values, as well as Pearson's correlation tests and coefficient of determination between relative humidity variables and new cases values.
Results: An inverse correlation was obtained between relative humidity and new cases with COVID-19 in the studied regions, where the analysis was significant for Wuhan and weak for Guayaquil city.
Conclusions: There is an inverse correlation between the studied variables. The higher the relative humidity, the fewer the cases. Figures higher than 80% relative humidity could lead to a lower contagion risk; an interval between 60% and 75% would increase the risk of infection.


REFERENCES

  1. Eurosurveillance editorial team. Note from the editors: novel coronavirus (2019-nCoV). Euro Surveill. 2020[citado 15/05/2020];25(3):2001231.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988271/

  2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020[citado 12/04/2020];382(8):727-733.Disponible en: https://www.nejm.org/doi/full/10.1056/nejmoa2001017

  3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020[citado 15/05/2021];395(10223):497–506.Disponible en: https://www.sciencedirect.com/science/article/pii/S0140673620301835

  4. As.com. Mapa del coronavirus en el mundo, en tiempo real hoy, 24 de abril: casos y muertos. As. Com. 24/04/2020; Coronavirus. Disponible en: https://as.com/diarioas/2020/04/24/actualidad/1587705497_422950.html

  5. Ríos AM. América Latina y el Caribe: número de casos de COVID-19 por país. Alemania: Statista; 11/06/2021[citado 15/06/2021].Disponible en: https://es.statista.com/estadisticas/1105121/numero-casos-covid-19-america-latina-caribe-pais/

  6. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis.2020 [citado 12/05/2021]; 92:214-217.Disponible en: https://www.sciencedirect.com/science/article/pii/S1201971220300539

  7. Martines E. Definiciones de humedad y su equivalencia. Encuentro Nacional de Metrología Eléctrica. México: Centro Nacional de Metrología de México; 2007[citado 15/08/2020]. Disponible en: www.cenam.mx/dmE/pdf/TM02.pdf

  8. Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci Total Environ. 2020[citado 15/08/2020];724: 138226.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142681

  9. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of Respiratory Viral Infections. Annu Rev Virol. 2020[ctado 25/065/2021];7(12):83-101.Disponible en: https://doi.org/10.1146/annurev-virology-012420-022445

  10. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Geneva; WHO; 28/02/2020 [citado 25/08/2020]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

  11. Edwards AL. The Correlation Coefficient. En: An Introduction to Linear Regression and Correlation. San Francisco, CA: W. H. Freeman; 1976.p. 33-46,

  12. Martín Andrés A, Luna del Castillo JD. Bioestadística para las ciencias de la salud. 4ª ed. Madrid: ORMA; 1993.

  13. Umakanthan S, Sahu P, Ranade AV, Bukelo MM, Rao JS, Abrahao Machado LF, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020[citado 25/04/2021];96(1142):753-758.Disponible en: https://pmj.bmj.com/content/96/1142/753.abstract

  14. Wang J, Tang K, Feng K, Lin X, Lv W, Chen K, et al. Impact of Temperature and Relative Humidity on the Transmission of COVID-19: A Modeling Study in China and the United States. BMJ Open. 2020[citado 25/10/2020];11(2):043863. Disponible en: http://dx.doi.org/10.2139/ssrn.3551767

  15. Lipsitch M. Seasonality of SARS-CoV-2: Will COVID-19 go away on its own in warmer weather? Boston: Center for Communicable Disease Dynamics; sin fecha de publicación [citado 25/03/2020]. Disponible en: https://ccdd.hsph.harvard.edu/will-covid-19-go-away-on-its-own-in-warmer-weather

  16. Gustin KM, Belser JA, Veguilla V, Zeng H, Katz JM, Tumpey TM, et al. Environmental Conditions Affect Exhalation of H3N2 Seasonal and Variant Influenza Viruses and Respiratory Droplet Transmission in Ferrets. PLoS One. 2015[citado 15/08/2020];10(5):0125874.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430532

  17. Marr LC, Tang JW, Van Mullekom J, Lakdawala SS. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J R Soc Interface. 2019[citado 28/05/2021];16(150):20180298.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364647/

  18. Belser JA, Katz JM, Tumpey TM. The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 2011[citado 25/05/2020];4(5).Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180220/

  19. Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, et al. Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol. 2009[citado 25/07/2020];83(7):2851-2861.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655560/

  20. Noti JD, Blachere FM, McMillen CM, Lindsley WG, Kashon ML, Slaughte DR, et al. High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs. PLoS One. 2013[citado 12/02/2020]; 8(2): 57485. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583861/

  21. Karim YG, Ijaz MK, Sattar SA, Johnson-Lussenburg CM. Effect of relative humidity on the airborne survival of rhinovirus-14. Can J Microbiol. 1985[citado 28/05/2020];31(11):1058-1061.Disponible en: https://cdnsciencepub.com/doi/abs/10.1139/m85-199?journalCode=cjm

  22. Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLOS Pathog. 2007[citado 15/08/2020]; 3(10):1470-1476. https://www.uruorich.jp/common/pdf/influ_english.pdf

  23. Williams R, Rankin N, Smith T, Galler D, Seakins P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med. 1996[citado 25/08/2020];24(11):1920-1929.Disponible en: https://journals.lww.com/ccmjournal/Abstract/1996/11000/Relationship_between_the_humidity_and_temperature.25.aspx

  24. Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles Wilhelm F, Amoroso A. Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. JAMA Netw Open. 2020[citado 25/05/2020];3(6).Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290414/

  25. Sangkham S, Thongtip S, Vongruang P. Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and Air Quality during the Outbreak. Environ Res. 2021[citado 25/07/2020];197:111104. https://www.sciencedirect.com/science/article/pii/S0013935121003984?via%3Dihub

  26. Chan KH, Malik Peiris JS, lam SY, Poon LL, Yuen KY, Seto WH. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv Virol. 2011[citado 15/08/2020];2011:734690.Disponible en: https://www.hindawi.com/journals/av/2011/734690/

  27. Leo Lorenzo JS, Wai SanTamb W, Jie Seowac W. Association between air quality, meteorological factors and COVID-19 infection case numbers. Environmental Res. 2021[citado 25/08/2020]; 197.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968307/

  28. Feng Y, Marchal T, Sperry T, Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J Aerosol Sci. 2020[citado 02/09/2020];147:105585.Disponible en: https://www.sciencedirect.com/science/article/pii/S0021850220300744




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Correo Científico Médico. 2021;25