medigraphic.com
SPANISH

MEDICC Review

ISSN 1527-3172 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 3-4

<< Back Next >>

MEDICC Review 2021; 23 (3-4)

Influence of Inflammation on Assessing Iron-Deficiency Anemia in Cuban Preschool Children

Pita-Rodríguez GM, Chávez-Chong C, Lambert-Lamazares B, Montero-Díaz M, Selgas-Lizano R, Basabe-Tuero B, Alfonso-Sagué K, Díaz-Sánche ME
Full text How to cite this article

Language: English
References: 35
Page: 37-45
PDF size: 307.04 Kb.


Key words:

Anemia, iron deficiency, child, preschool, inflammation, Cuba.

ABSTRACT

INTRODUCTION Anemia is a public health problem worldwide and is most prevalent in preschool children, for whom it is the most frequent cause of nutritional deficits. In turn, iron deficiency is the main cause of anemia, affecting 43% of children globally. Previous studies in Cuba show rates of iron deficiency in preschool children between 38.6% and 57.6%, higher in infants (71.2% to 81.1%). WHO recommends using serum ferritin as an indicator of iron deficiency accompanied by acute (C-reactive protein) and chronic (α1-acid glycoprotein) inflammation biomarkers.
OBJECTIVE Assess how inflammation affects measuring and reporting of iron-deficiency anemia rates in Cuban preschool children.
METHODS Data were obtained from serum samples contained in the National Anemia and Iron Deficiency Survey, and included presumably healthy preschool Cuban children (aged 6–59 months). Serum samples were collected from 1375 children from randomly selected provinces in 4 regions of the country from 2014 through 2018. We examined the association between ferritin and two inflammatory biomarkers: C-reactive protein and α1-acid glycoprotein. Individual inflammation-adjusted ferritin concentrations were calculated using four approaches: 1) a higher ferritin cut-off point (<30 g/L); 2) exclusion of subjects showing inflammation (C-reactive protein >5 mg/L or α1-acid glycoprotein >1 g/L); 3) mathematical correction factor based on C-reactive protein or α1-acid glycoprotein; and 4) correction by regression with the method proposed by the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia Group. We estimated confidence intervals of differences between unadjusted prevalence and prevalence adjusted for inflammation by each method.
RESULTS The proportion of children with inflammation according to C-reactive protein concentrations >5 mg/L was lower (11.1%, 153/1375) than the proportion measured according to the concentrations of α1-acid glycoprotein, at >1 g/L (30.8%, 424/1375). The percentage of children with high concentrations of at least one of the aforementioned biomarkers was 32.7% (450/1375). Thus, each correction method increased the observed prevalence of iron deficiency compared to unadjusted estimates (23%, 316/1375). This increase was more pronounced when using the internal regression correction method (based only on C-reactive protein) or the method based on a higher cut-off point. Adjustment using all four methods changed estimated iron deficiency prevalence, increasing it from 0.1% to 8.8%, compared to unadjusted values.
CONCLUSION One-third of preschool children had biomarkers indicating elevated inflammation levels. Without adjusting for inflammation, iron deficiency prevalence was underestimated. The significant disparity between unadjusted and inflammation-adjusted ferritin when using some approaches highlights the importance of selecting the right approach for accurate, corrected measurement. The internal regression correction approach is appropriate for epidemiological studies because it takes into account inflammation severity. However, other models should be explored that account for inflammation and also provide better adjusted ferritin concentrations.


REFERENCES

  1. Global Burden of Disease 2015 Disease andInjury Incidence and Prevalence Collaborators.Global, regional, and national incidence, prevalence,and years lived with disability for 310diseases and injuries, 1990-2015: a systematicanalysis for the Global Burden of DiseaseStudy 2015. Lancet [Internet]. 2016 Oct 8 [cited 2020 Mar 6];388(10053):1545–602. Availableat: https://doi.org/10.1016/S0140-6736(16)31678-6

  2. Stevens GA, Finucane MM, De-Regil LM,Paciorek CJ, Flaxman SR, Branca F, et al. Global,regional, and national trends in haemoglobinconcentration and prevalence of total and severeanaemia in children and pregnant and nonpregnantwomen for 1995–2011: a systematicanalysis of population-representative data.Lancet Glob Health. 2013 Jul;1(1):e16–25. DOI:10.1016/S2214-109X(13)70001-9

  3. Gay Rodríguez J, Reboso Pérez JG, CabreraHernández A, Hernández Triana M, LetelierChong A, Sánchez MA. Anemia nutricional en ungrupo de niños aparentemente sanos de 2 a 4años de edad. Rev Cubana Aliment Nutr. 2002Jan–Jul;16(1):31–4. Spanish.

  4. Reboso J, Jiménez Acosta S, Monterrey P,Macías C, Pita G, Selva L, et al. Diagnósticode la anemia por defi ciencia de hierro en niñosde 6 a 24 meses y de 6 a 12 años de edad delas provincias orientales de Cuba. Rev Esp NutrComunitaria. 2005;11(2):60–8. Spanish.

  5. Reboso Pérez J, Cabrera Núñez E, PitaRodríguez G, Jiménez Acosta S. Anemia pordefi ciencia de hierro en niños de 6 a 24 mesesy de 6 a 12 años de edad. Rev Cubana SaludPública. 2005 Sep–Dec;31(4):306–12. Spanish.

  6. Pita-Rodríguez G, Basabe-Tuero B, Díaz-Sánchez ME, Mercader-Camejo O, Reboso-Pérez J, Carrillo-Selles M, et al. Progreso enla reducción de la anemia en niños y niñas deun año de edad en La Habana entre los años2005 y 2007. Nutr Clin Diet Hosp. 2012 Jan–Apr;32(1):13–25. Spanish.

  7. World Health Organization; Center for DiseaseControl and Prevention. Assessing the iron statusof populations: including literature reviews: reportof a Joint World Health Organization/Centersfor Disease Control and Prevention TechnicalConsultation on the Assessment of Iron Statusat the Population Level, Geneva, Switzerland,6-8 April 2004, 2nd ed [Internet]. Geneva: WorldHealth Organization; 2007 [cited 2020 Mar 6].112 p. Available at: https://apps.who.int/iris/handle/10665/75368

  8. World Health Organization. WHO guideline on useof ferritin concentrations to assess iron status inindividuals and populations [Internet]. Geneva:World Health Organization; 2020 [cited 2020 Mar6]. 80 p. Available at: https://apps.who.int/iris/bitstream/handle/10665/331505/9789240000124-eng.pdf?sequence=1&isAllowed=y

  9. Witte DL. Can serum ferritin be effectivelyinterpreted in the presence of the acute-phaseresponse? Clin Chem [Internet]. 1991 Apr 1 [cited2020 Mar 6];37(4):484–5. Available at: https://doi.org/10.1093/clinchem/37.4.484

  10. Beard JL, Murray-Kolb LE, Rosales FJ,Solomons NW, Angelilli ML. Interpretation ofserum ferritin concentrations as indicators oftotal-body iron stores in survey populations: therole of biomarkers for the acute phase response.Am J Clin Nutr [Internet]. 2006 Dec 1 [cited 2020Mar 6];84(6):1498–505. Available at: https://doi.org/10.1093/ajcn/84.6.1498

  11. Darboe MK, Thurnham DI, Morgan G, AdegbolaRA, Secka O, Solon JA, et al. Effectiveness ofan early supplementation scheme of high-dosevitamin A versus standard WHO protocol inGambian mothers and infants: a randomisedcontrolled trial. Lancet [Internet]. 2007 Jun23 [cited 2020 Mar 6];369(9579):2088–96.Available at: https://doi.org/10.1016/S0140-6736(07)60981-7

  12. Gibson RS, Abebe Y, Stabler S, Allen RH,Westcott JE, Stoecker BJ, et al. Zinc, gravida,infection, and iron, but not vitamin B-12 or folatestatus, predict hemoglobin during pregnancy inSouthern Ethiopia. J Nutr. 2008 Mar;138(3):581–6. DOI: 10.1093/jn/138.3.581

  13. World Health Organization. Serum ferritinconcentrations for the assessment of iron statusand iron defi ciency in populations. Vitamin andMineral Nutrition Information System (WHO/NMH/NHD/MNM/11.2) [Internet]. Geneva: WorldHealth Organization; 2011 [cited 2014 Jul 5]. 5 p.Available at: http://www.who.int/vmnis/indicators/serum_ferritin.pdf

  14. Raiten DJ, Ashour FAS, Ross AC, Meydani SN,Dawson HD, Stephensen CB, et al. Infl ammationand Nutritional Science for Programs/Policies andInterpretation of Research Evidence (INSPIRE).J Nutr. 2015 May;145(5):1039S–108S.

  15. Petri N, Olofi n I, Hurrell RF, Boy E, Wirth JP,Moursi M, et al. The proportion of anemiaassociated with iron defi ciency in low, medium,and high human development index countries: asystematic analysis of national surveys. Nutrients[Internet]. 2016 Nov 2 [cited 2020 Mar 10];8:693.Available at: https://doi.org/10.3390/nu8110693

  16. Council of Ministers Executive Committee(CU). Acuerdo No. 15-08. Plan integral parala prevención y el control de la anemia pordefi ciencia de hierro en Cuba. Havana: Councilof Ministers Executive Committee (CU); 2008.Spanish.

  17. Domínguez-Alonso E, Zacca E. Sistema de saludde Cuba. Salud Pública Méx. 2011;53(Suppl2):S168–S76.

  18. Thurnham DI, McCabe LD, Haldar S, WieringaFT, Northrop-Clewes CA, McCabe GP. Adjustingplasma ferritin concentrations to removethe effects of subclinical infl ammation in theassessment of iron defi ciency: a meta-analysis.Am J Clin Nutr [Internet]. 2010 [cited 2020Mar 6];92(3):546–55. Available at: https://doi.org/10.3945/ajcn.2010.29284

  19. R Core Team. R: A Language and Environmentfor Statistical Computing. Vienna: R Foundationfor Statistical Computing; 2019.

  20. Namaste SM, Aaron GJ, Varadhan R, PeersonJM, Suchdev PS; BRINDA Working Group.Methodologic approach for the biomarkersrefl ecting Infl ammation and NutritionalDeterminants of Anemia (BRINDA) Project. AmJ Clin Nutr. 2017;106(Suppl 1):333S–47S. DOI:10.3945/ajcn.116.142273

  21. Mwangi MN, Echoka E, Knijff M, Kaduka L,Werema BG, Kinya FM, et al. Iron status ofKenyan pregnant women after adjusting forinfl ammation using BRINDA regression analysisand other correction methods. Nutrients. 2019Feb 16;11(2):420. DOI: 10.3390/nu11020420

  22. World Medical Association Declaration ofHelsinki. Ethical principles for medical researchinvolving human subjects. Bull World HealthOrgan. 2013;310(20):2191–4. DOI: 10.1001/jama.2013.281053

  23. Namaste SML, Ou J, Williams AM, YoungMF, Yu EX, Suchdev PS. Adjusting iron andvitamin A status in settings of infl ammation: a sensitivity analysis of the Biomarkers Refl ectingInfl ammation and Nutritional Determinants ofAnemia (BRINDA) approach. Am J Clin Nutr[Internet]. 2020 Aug 4 [cited 2021 Mar 6];112(Suppl 1):458S–67S. Available at: https://doi.org/10.1093/ajcn/nqaa141

  24. Paynter S. Humidity and respiratory virustransmission in tropical and temperate settings.Epidemiol Infect. 2015;143(6). 1110–8. DOI:10.1017/S0950268814002702

  25. Lanata CF, Black RE. Diarrheal Diseases. Chapter6. In: Semba RD, Bloem MW, editors. Nutritionand Health in developing countries 2nd ed. Totowa(US): Humana Press; 2008 p. 139–78.

  26. National Health Statistics and Medical RecordsDivision (CU). Anuario Estadístico de Salud2018. Havana: Ministry of Public Health (CU);2019. Spanish.

  27. Ribas MA, Castaño Y, Martínez MD, Tejero Y,Cordero Y. Norovirus and Rotavirus infection inchildren aged less than fi ve years in a paediatrichospital, Havana, Cuba. Braz J Infec Dis. 2015Mar–Apr;19(2):222–3.

  28. Borroto S, Valdés O. Vigilancia de infeccionesrespiratorias agudas. Cuba, 2018. BOLIPK[Internet]. 2019 Feb 4 [cited 2020 Feb17];29(3):17–24. Available at: http://fi les.sld.cu/ipk/fi les/2019/04/Vol-29-03.pdf. Spanish.

  29. Williams AM, Ladva CN, Leon JS, Lopman BA,Tangpricha V, Whitehead RD, et al. Changesin micronutrient and infl ammation serumbiomarker concentrations after a norovirushuman challenge. Am J Clin Nutr. 2019 Dec1;110(6):1456–64. DOI: 10.1093/ajcn/nqz201

  30. Prentice AM, Bah A, Jallow MW, Jallow AT,Sanyang S, Sise EA, et al. Respiratory infectionsdrive hepcidin-mediated blockade of ironabsorption leading to iron defi ciency anemia inAfrican children. Sci Adv. 2019 Mar 27;5(3). DOI:10.1126/sciadv.aav9020

  31. Apoyo al Plan Nacional para la Prevención yControl de la Anemia en niños menores de 5 añosde las cinco provincias orientales (2008-2012).Programa Mundial de Alimentos. Proyecto deDesarrollo Cuba 10589 Apoyo al Plan Nacionalpara la prevención y el Control de la Anemia enlas cinco provincias orientales de Cuba [Internet].Roma: Programa Mundial de Alimentos; 2007Oct [cited 2010 Oct 25]. Available at: http://www.onu.org.cu/pma/proyectos.asp. Spanish.

  32. Apoyo a la lucha contra la anemia en gruposvulnerables en Cuba. Ventana temática: infancia,seguridad alimentaria y nutrición. NacionesUnidas. Programa conjunto. Apoyo a la luchacontra la anemia en grupos vulnerables en Cuba[Internet]. New York: United Nations; 2009 Sep[cited 2010 Oct 20]. Available at: http://www.mdgfund.org/sites/default/files/Signed_JP_Cuba_Children_29Sept09.pdf. 80 p. Spanish.

  33. Drakesmith H, Prentice AM. Hepcidin andthe iron-infection axis. Science. 2012 Nov9;338(6108):768–72. DOI: https://doi.org/10.1126/science.1224577

  34. Namaste SM, Rohner F, Huang J, Bhushan NL,Flores-Ayala R, Kupka R, et al. Adjusting ferritinconcentrations for infl ammation: BiomarkersRefl ecting Infl ammation and NutritionalDeterminants of Anemia (BRINDA) project. AmJ Clin Nutr [Internet]. 2017 Jul [cited 2020 Oct25];106(Suppl 1):359S–71S. Available at: https://doi.org/10.3945/ajcn.116.141762

  35. Raghavan R, Ashour FS, Bailey R. A reviewof cutoffs for nutritional biomarkers. Adv Nutr.2016 Jan 15;7(1):112–20. DOI: 10.3945/ajcn.116.141762.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

MEDICC Review. 2021;23