2023, Number 2
<< Back Next >>
Rev ADM 2023; 80 (2)
Effects of micro-vibration and estrogen on bone: a systematic review.
González RM, Villanueva ARE, García LS, Molina-Frechero N, Salgado MY
Language: Spanish
References: 31
Page: 104-114
PDF size: 269.31 Kb.
ABSTRACT
Introduction: Bone loss is an event that affects the entire skeleton. Thus, musculoskeletal disorders affect millions of people worldwide and are among the most common causes of chronic pain.
Objective: to know the effects of micro-vibration and estrogen on bone remodelling.
Material and methods: a systematic review was carried out; seven databases were searched; Controlled clinical studies conducted with rats or mice in the publication period from 2004 to 2022 were included. The quality of the synthesized evidence was assessed using the Jadad scale.
Results: fifteen articles were identified as primary studies. Micro vibration reported in vivo/in vitro changes dependent on the stimulus that entails an increase in the outer cortex. In turn, with the administration of estrogen, effects were reported, specifically in the trabecular bone and in the periosteum, as well as immature collagen that indicates bone turnover.
Conclusion: both micro-vibration and the administration of estrogen contribute to the remodelling of bone tissue and are usable as a treatment for bone loss.
REFERENCES
Fernández-Tresguerres-Hernández-Gil I et al. Physiological bases of bone regeneration. Parte I: histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal. 2006; 11 (1): E47-51.
Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: A clinical trial assessing compliance, efficacy, and safety. Journal of Bone and Mineral Research. 2004; 19: 343-351.
Moreira-Marconi E, Dionello CF, Morel DS et al. Could whole body vibration exercises influence the risk factors for fractures in women with osteoporosis? Osteoporos Sarcopenia. 2016; 2 (4): 214-220.
Kerr TF, W ylie AH, Currie AR. Apoptosis: a basic biological phenome-non with wide-ranging implications in tissue kinetics. Br J Cancer. 1972; 26: 239-257.
Barletta VJ. Correlación de la determinación de desoxipiridinolina con los valores de densitometría ósea en mujeres postmenopáusicas. [Tesis digitales UNMSM] Lima, Perú: 2003.
Menchén L, Ripoll C, Bretón C et al. Osteoporosis y enfermedad inflamatoria intestinal. Nutr Hosp. 2005; 20 (1): 26-37.
Schenkein HA, Thomas RR. Anticardiolipin from periodontitis patients impact fetal loss and annexin V. J Dent Res. 2020; 99 (7): 797-803.
Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expresion and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology. 1999; 140: 4367-4370.
Fernández SJ, Arfelis JMN. Apoptosis e implicaciones clínicas. MTA-Med Int. 1999; 17: 425-468.
Hughes DE, Boyce BF. Apoptosis in bone physiology and disease. J ClinPathol Mol Pathol. 1997; 50: 132-137.
Ortiz J. Apoptosis y hueso. Rev Esp Enf Metab Óseas. 1995; 4: 169-171.
Pavlin D, Anthony R, Raj V, Gakunga PT, editors. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial. Semin Orthod; 2015: Elsevier. Available in: http://dx.doi.org/10.1053/j.sodo.2015.06.005
Page MJ, McKenzie JE, Bossuyt PM et al. La declaración PRISMA 2020: una guía actualizada para informar revisiones sistemáticas. BMJ. 2021; 372: n71. doi: 10.1136/bmj.n71.
Cristina Mamédio Da-Costa Santos CM, de Mattos-Pimenta CA, Nobre MR. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007; 15 (3): 508-511.
Jadad AR, Carrol D, Jenkinson C et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Contr Clin Trials. 1996; 17 (1): 1-12.
McGuinness, LA, Higgins, JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Syn Meth. 2021; 12: 55-61.
Zhang Y, Hou W, Liu Y et al. Microvibration stimulates β-catenin expression and promotes osteogenic differentiation in osteoblasts. Arch Oral Biol. 2016; 70: 47-54. Available in: http://dx.doi.org/10.1016/j.archoralbio.2016.06.009
Sakamoto M, Fukunaga T, Sasaki K, Seiryu M, Yoshizawa M, Takeshita N, et al. Vibration enhances osteoclastogenesis by inducing RANKL expression via NF-κB signaling in osteocytes. Bone. 2019; 123: 56-66. Available in: http://dx.doi.org/10.1016/j.bone.2019.03.024
García-López S, Villanueva RE, Massó-Rojas F, Páez-Arenas A, Meikle MC. Micro-vibrations at 30 Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. Arch Oral Biol. 2020; 110 (104594): 104594. Available in: http://dx.doi.org/10.1016/j.archoralbio.2019.104594
Hou W, Zhang D, Feng X, Zhou Y. Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement of β-catenin signaling pathway. Arch Oral Biol. 2020; 118 (104860): 104860. Available in: http://dx.doi.org/10.1016/j.archoralbio.2020.104860.
Minematsu A, Nishii Y, Imagita H, Sakata S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos Sarcopenia. 2019; 5 (3): 78-83. Available in: http://dx.doi.org/10.1016/j.afos.2019.07.001
Cardoso AL, Frederico ÉH, Guimarsaes CA et al. Long-term effects of mechanical vibration stimulus on the bone formation of Wistar rats: an assessment method based on X-rays images. Acad Radiol. 2021; 28 (8): e240-245. Available in: http://dx.doi.org/10.1016/j.acra.2020.05.035
Kakihata CMM, Peretti AL, Tavares ALFet al. Morphometric effects of whole-body vibration on the bone in a rat model of postmenopausal osteoporosis. J Manipulative Physiol Ther. 2020; 43 (5): 551-557. Available in: http://dx.doi.org/10.1016/j.jmpt.2019.05.009
Duarte PM, Goncalves PF, Sallum AW et al. Effect of an estrogen-deficient state and its therapy on bone loss resulting from an experimental periodontitis in rats. J Periodontal Res. 2004; 39 (2): 107-110. Available in: http://dx.doi.org/10.1111/j.1600-0765.2004.00714.x.
Faloni AP de S, Sasso-Cerri E, Rocha FRG, Katchburian E, Cerri PS. Structural and functional changes in the alveolar bone osteoclasts of estrogen-treated rats: alveolar bone osteoclasts in estrogen-treated rats. J Anat. 2012; 220 (1): 77-85. Available in: http://dx.doi.org/10.1111/j.1469-7580.2011.01449.x
Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simoes MJ, Cerri PS. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother. 2018; 98: 406-415. Available in: http://dx.doi.org/10.1016/j.biopha.2017.12.089
Liedert A, Nemitz C, Haffner-Luntzer M, Schick F, Jakob F, Ignatius A. Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss. Int J Mol Sci. 2020; 21 (21): 8301. Available in: http://dx.doi.org/10.3390/ijms21218301
Giro G, Goncalves D, Sakakura CE, Pereira RMR, Marcantonio Júnior E, Orrico SRP. Influence of estrogen deficiency and its treatment with alendronate and estrogen on bone density around osseointegrated implants: radiographic study in female rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 105 (2): 162-167. Available in: http://dx.doi.org/10.1016/j.tripleo.2007.06.010
Spalding M, Ferreira Amschlinger P, de Vasconcellos LMR et al. Evaluation of different periods of estrogen replacement onset in the tibia of ovariectomized rats. Aging Clin Exp Res. 2014; 26 (5): 465-471. Available in: http://dx.doi.org/10.1007/s40520-014-0268-1
Müller ST, Keiler AM, Kräker K, Zierau O, Bernhardt R. Influence of estrogen on individual exercise motivation and bone protection in ovariectomized rats. Lab Anim. 2018; 52 (5): 479-489. Available in: http://dx.doi.org/10.1177/0023677218756455
Moura MLA, Fugimoto M, Kawachi APM, de Oliveira ML, Lazaretti-Castro M, Reginato RD. Estrogen therapy associated with mechanical vibration improves bone microarchitecture and density in osteopenic female mice. J Anat. 2018; 233 (6): 715-723. Available in: http://dx.doi.org/10.1111/joa.12893.