medigraphic.com
SPANISH

Revista Médica de la Universidad Autónoma de Sinaloa REVMEDUAS

ISSN 2007-8013 (Print)
Órgano oficial de la Universidad Autónoma de Sinaloa
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

Rev Med UAS 2023; 13 (1)

Diagnosis and classification of diabetic retinopathy using ultra-wide field fundus imaging, comparing Optos® and Clarus 700® systems

García-Medina KA, Romo-García E
Full text How to cite this article

Language: Spanish
References: 23
Page: 33-44
PDF size: 233.49 Kb.


Key words:

Diabetic mellitus, diabetic retinopathy, Ultra-wide-field retinal imaging systems.

ABSTRACT

Objective: to determine the concordance in the diagnosis and classification of diabetic retinopathy using ultra-wide field fundus images, comparing the Optos® and Clarus 700® systems. Materials and methods: a comparative, descriptive, prospective and crosssectional study was carried out in which 144 eyes of 77 patients (41 men and 36 women) were included to estimate the K (kappa) concordance coefficient with a confidence of 95%. Results: Cohen's Kappa coefficient obtained was .846, which translates as very good agreement between the Optos® and Clarus 700® systems in the diagnosis and classification of diabetic retinopathy using ultrawide field fundus images. Conclusions: both ultra-wide field fundus imaging systems proved to be similar in the diagnosis and classification of diabetic retinopathy; however, Optos® allowed for larger fundus images than Clarus 700®; while Clarus 700® produced fewer artifacts and provided more detailed fundus images. There is no record of previous studies that compare both ultra-wide field systems that have been carried out in Mexico, which allows using the information obtained as a basis for subsequent studies..


REFERENCES

  1. Lechner J, O'Leary OE, Stitt AW. The pathologyassociated with diabetic retinopathy. VisionRes. 2017 Oct 1;139:7-14.

  2. Honasoge A, Nudleman E, Smith M, RajagopalR. Emerging insights and interventions for diabeticretinopath. Curr Diab Rep. 2019Oct;19(10):1-6.

  3. Altmann C, Schmidt MH. The role of microgliain diabetic retinopathy: inflammation, microvasculaturedefects and neurodegeneration.Int J Mol Sci. 2018 Jan;19(1):110.

  4. Kashim RM, Newton P, Ojo O. Diabetic retinopathyscreening: A systematic review on patients’non-attendance. Int J Environ Res PublicHealth. 2018 Jan;15(1):157.

  5. Cheloni R, Gandolfi SA, Signorelli C, Odone A.Global prevalence of diabetic retinopathy: protocolfor a systematic review and metaanalysis.BMJ Open. 2019 Mar1;9(3):e022188.

  6. Wat N, Wong RL, Wong IY. Associations betweendiabetic retinopathy and systemic riskfactors. Hong Kong Med J. 2016 Dec1;22(6):589-99.

  7. Simó-Servat O, Hernández C, Simó R. Diabeticretinopathy in the context of patients with diabetes.Ophthalmic Res. 2019;62(4):211-7.

  8. Zheng Y, Lamoureux EL, Lavanya R, Wu R,Ikram MK, Wang JJ et al. Prevalence and riskfactors of diabetic retinopathy in migrant Indiansin an urbanized society in Asia: the SingaporeIndian eye study. Ophthalmology.2012 Oct 1;119(10):2119-24.

  9. Raman R, Krishnan R, Kim Ramasamy SN.Diabetic retinopathy: A right time to intervene.Indian J Ophthalmol. 2020 Feb;68(2):305.

  10. Wong TY, Sabanayagam C. Strategies to tacklethe global burden of diabetic retinopathy:from epidemiology to artificial intelligence. Ophthalmol.2020;243(1):9-20.

  11. Solomon SD, Goldberg MF. ETDRS grading ofdiabetic retinopathy: still the gold standard?.Ophthalmic Res. 2019;62(4):190-5.

  12. Bandello F, Cicinelli MV. 19th EURETINA congresskeynote lecture: diabetic retinopathy today.Ophthalmologica. 2020;243(3):163-71.

  13. Wang W, Lo AC. Diabetic retinopathy: pathophysiologyand treatments. Int J Mol Sci. 2018Jun;19(6):1816.

  14. Padhy SK, Takkar B, Chawla R, Kumar A. Artificialintelligence in diabetic retinopathy: A naturalstep to the future. Indian J Ophthalmol.2019 Jul;67(7):1004.

  15. Liu TA, Arevalo JF. Wide-field imaging in proliferativediabetic retinopathy. Int J Retin Vitr.2019 Dec;5(1):1-4.

  16. Falavarjani KG, Wang K, Khadamy J, SaddaSR. Ultra-wide-field imaging in diabetic retinopathy;an overview. J. Curr Ophthalmol. 2016Jun 1;28(2):57-60.

  17. Linz MO, Scott AW. Wide-field imaging of sickleretinopathy. Int J Retin Vitr. 2019Dec;5(1):1-1.

  18. Byberg S, Vistisen D, Diaz L, Charles MH, HajariJN, Valerius M et al. Optos wide􀇦field imagingversus conventional camera imaging in Danishpatients with type 2 diabetes. Acta Ophthalmol.2019 Dec;97(8):815-20.

  19. Rabiolo A, Parravano M, Querques L, CicinelliMV, Carnevali A, Sacconi R et al. Ultra-widefieldfluorescein angiography in diabetic retinopathy:a narrative review. Clin Ophthalmol.

  20. 2017;11:803.20. Oh K, Kang HM, Leem D, Lee H, Seo KY,Yoon S. Early detection of diabetic retinopathybased on deep learning and ultra-wide-fieldfundus images. Sci Rep. 2021 Jan 21;11(1):1-9.

  21. Ting DS, Cheung CY, Lim G, Tan GS, QuangND, Gan A et al. Development and validationof a deep learning system for diabetic retinopathyand related eye diseases using retinalimages from multiethnic populations with diabetes.JAMA. 2017 Dec 12;318(22):2211-23.

  22. Lim G, Bellemo V, Xie Y, Lee XQ, Yip MY, TingDS. Different fundus imaging modalities andtechnical factors in AI screening for diabetic retinopathy:a review. Eye Vis. 2020 Dec;7(1):1-3.

  23. Hirano T, Imai A, Kasamatsu H, Kakihara S,Toriyama Y, Murata T. Assessment of diabeticretinopathy using two ultra-wide-field fundusimaging systems, the Clarus® and Optos™systems. BMC Ophthalmol. 2018 Dec;18(1):1-7.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Med UAS. 2023;13