medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 2

<< Back Next >>

Rev Biomed 2023; 34 (2)

Identification of genes associated with Diabetic Nephropathy regulated by miRNAs: In silico analysis

Jiménez-Ortega RF, Justo-Frausto JE, Montes-García JF, Alva-Partida I
Full text How to cite this article

Language: Spanish
References: 28
Page: 145-157
PDF size: 383.09 Kb.


Key words:

Nephropathy, Diabetes, miRNA, Genes, Microarrays, Bioinformatics.

ABSTRACT

Introduction. Albuminuria greater than 300mg/dL/24h (A1-300mg/g) is a characteristic of diabetic nephropathy (DN), which can trigger the development of advanced chronic kidney disease (ACKD).
Objective. Identify genes regulated by miRNAs that are associated with DN through an in-silico analysis.
Material and methods. Through the use of microarrays and bioinformatic analysis, potential miRNA target genes were identified: hsa-miR-126-3p, miR-320a-3p, and miR-1288-3p. These genes were subjected to signaling pathway analysis to identify processes associated with DN pathogenesis.
Results. 57 target genes were identified from the analyzed miRNAs, which were associated with 14 genetic ontologies and 7 KEGG signaling pathways. These results allowed the generation of an in-silico model showing an interaction network between target genes regulated by miRNAs whose alteration can lead to the development of ND.
Conclusions. In the in-silico model, the network of interactions found between target genes regulated by miRNAs could contribute to the understanding of the DN mechanism, opening the panorama for new research on genes and miRNAs that could be evaluated as markers in the early detection of DN.


REFERENCES

  1. Shen Z, Fang Y, Xing T, Wang F. Diabetic Nephropathy:From Pathophysiology to Treatment. J Diabetes Res. 2017:2379432. DOI: 10.1155/2017/2379432.

  2. Colhoun HM, Marcovecchio ML. Biomarkers ofdiabetic kidney disease. Diabetología. 2018:61(5):996-1011. DOI: 10.1007/s00125-018-4567-5.

  3. Staiteieh SA, Akil L, Al Khansa R, Nasr R, Al SagheerZ, Houshaymi B, Merhi RA. Study of microRNAexpression profiling as biomarkers for colorectal cancerpatients in Lebanon. Mol Clin Oncol. 2022:16(2):39.DOI: 10.3892/mco.2021.2473.

  4. Leitão AL, Enguita FJ. A Structural View of miRNABiogenesis and Function. Noncoding RNA. 2022:8(1):10.DOI: 10.3390/ncrna8010010.

  5. Alva I, Espinosa LI, Jiménez-Ortega RF. Biogenesis demiARN y su papel como biomarcadores en la detecciónde la nefropatía diabética. Rev. ALAD. 2022:12(1):15-25. DOI: 10.24875/ALAD.22000003.

  6. He M, Wang J, Yin Z, Zhao Y, Hou H, Fan J. et al. MiR-320a induces diabetic nephropathy via inhibiting MafB.Aging (Albany NY). 2019:11(10):3055-3079. DOI:10.18632/aging.101962.

  7. Conserva F, Barozzino M, Pesce F, Divella C, OrangerA, Papale M. et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosisin Diabetic Nephropathy. Sci Rep. 2019:9(1):11357.DOI: 10.1038/s41598-019-47778-1.

  8. Pordzik J, Eyileten-Postuła C, Jakubik D, Czajka P,Nowak A, De Rosa S. et al. MiR-126 Is an IndependentPredictor of Long-Term All-Cause Mortality inPatients with Type 2 Diabetes Mellitus. J Clin Med.2021:10(11):2371. DOI: 10.3390/jcm10112371.

  9. Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA,Skrypnyk C, Sabry MA, Ramadan AR. Decreasedexpression of circulating microRNA-126 in patients withtype 2 diabetic nephropathy: A potential blood-basedbiomarker. Exp Ther Med. 2016:12(2):815-822. DOI:

  10. 10.3892/etm.2016.3395.10. Raitoharju E, Seppälä I, Oksala N, LyytikäinenLP, Raitakari O, Viikari J, et al. Blood microRNAprofile associates with the levels of serum lipids andmetabolites associated with glucose metabolism andinsulin resistance and pinpoints pathways underlyingmetabolic syndrome: the cardiovascular risk in YoungFinns Study. Mol Cell Endocrinol. 2014:391(1-2):41-9.DOI: 10.1016/j.mce.2014.04.013.

  11. Lee YJ, Kim V, Muth DC, Witwer KW. ValidatedMicroRNA Target Databases: An Evaluation. Drug DevRes. 2015:76(7):389-96. DOI: 10.1002/ddr.21278.

  12. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk:An online resource for prediction of microRNA bindingsites. PLoS One. 2018:13(10):e0206239. DOI: 10.1371/journal.pone.0206239.

  13. Quillet A, Saad C, Ferry G, Anouar Y, Vergne N,Lecroq T. et al. Improving Bioinformatics Prediction ofmicroRNA Targets by Ranks Aggregation. Front Genet.2020:10:1330. DOI: 10.3389/fgene.2019.01330.

  14. Shved N, Warsow G, Eichinger F, Hoogewijs D, BrandtS, Wild P, et al. Transcriptome-based network analysisreveals renal cell type-specific dysregulation of hypoxiaassociatedtranscripts. Sci Rep. 2017:7(1):8576. DOI:10.1038/s41598-017-08492-y.

  15. Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM.The Role of Vitamin D in Diabetic Nephropathy: ATranslational Approach. Int J Mol Sci. 2022:23(2):807.DOI: 10.3390/ijms23020807.

  16. Samsu N. Diabetic Nephropathy: Challenges inPathogenesis, Diagnosis, and Treatment. Biomed ResInt. 2021:1497449. DOI: 10.1155/2021/1497449.

  17. Zhao C, Zhao M, Zhu Y, Zhang L, Zheng Z, WangQ, et al. The persistence and stability of miRNA inbloodstained samples under different environmentalconditions. Forensic Sci Int. 2021:318:110594. doi:10.1016/j.forsciint.2020.110594.

  18. Tang J, Yao D, Yan H, Chen X, Wang L, Zhan H. TheRole of MicroRNAs in the Pathogenesis of DiabeticNephropathy. Int J Endocrinol. 2019:8719060 DOI:10.1155/2019/8719060.

  19. Wang Z, Wang Z, Zhou Z, Ren Y. Crucial genesassociated with diabetic nephropathy explored bymicroarray analysis. BMC Nephrol. 2016:17(1):128.DOI: 10.1186/s12882-016-0343-2.

  20. Liu X, Li X. Key Genes Involved in Diabetic NephropathyInvestigated by Microarray Analysis. J Comput Biol.2019:26(12):1438-1447. doi: 10.1089/cmb.2019.0182.

  21. Feng S, Gao Y, Yin D, Lv L, Wen Y, Li Z, et al.Identification of Lumican and Fibromodulin as HubGenes Associated with Accumulation of ExtracellularMatrix in Diabetic Nephropathy. Kidney Blood PressRes. 2021:46(3):275-285. doi: 10.1159/000514013.

  22. Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA,Skrypnyk C, Sabry MA, Ramadan AR. Decreasedexpression of circulating microRNA-126 in patients withtype 2 diabetic nephropathy: A potential blood-basedbiomarker. Exp Ther Med. 2016:12(2):815-822. DOI:10.3892/etm.2016.3395.

  23. Zhang Y, Chen X, Yuan L, Zhang Y, Wu J, Guo N. etal. Down-regulation of IRAK1 attenuates podocyteapoptosis in diabetic nephropathy through PI3K/Aktsignaling pathway. Biochem Biophys Res Commun.2018:506(3):529-535. DOI: 10.1016/j.bbrc.2018.09.175.

  24. Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A. Rab GTPases as regulators of endocytosis,targets of disease and therapeutic opportunities. ClinGenet. 2011:80(4):305-18. DOI: 10.1111/j.1399-0004.2011.01724.x.

  25. Ding Y, Tang X, Wang Y, Yu D, Zhu C, Yu J. Tetrandrinealleviates podocyte injury via calcium-dependentcalpain-1 signaling blockade. BMC Complement MedTher. 2021:21(1):296. DOI: 10.1186/s12906-021-03469-x.

  26. Guo L, Sanders PW, Woods A, Wu C. The distributionand regulation of integrin-linked kinase in normal anddiabetic kidneys. Am J Pathol. 2001:159(5):1735-42.DOI: 10.1016/S0002-9440(10)63020-9.

  27. Meza Letelier CE, San Martín Ojeda CA, RuizProvoste JJ, Frugone Zaror CJ. Fisiopatología de lanefropatía diabética: una revisión de la literatura.Medwave. 2017:17(1):e6839. DOI: 10.5867/medwave.2017.01.6839.

  28. Du H, Yin Z, Zhao Y, Li H, Dai B, Fan J, et al. miR-320ainduces pancreatic β cells dysfunction in diabetes byinhibiting MafF. Mol Ther Nucleic Acids. 2021:26:444-457. DOI: 10.1016/j.omtn.2021.08.027.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2023;34