medigraphic.com
SPANISH

Revista Cubana de Oftalmología

ISSN 1561-3070 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 4

<< Back Next >>

Rev Cub Oftal 2021; 34 (4)

Refractive and visual results in patients operated on for myopia with surface techniques

Feng ZG, Pérez SRG, Guerra AM, Cárdenas DT, Du L
Full text How to cite this article

Language: Spanish
References: 24
Page: 1-20
PDF size: 433.99 Kb.


Key words:

laser refractive surgery, visual results, refraction.

ABSTRACT

Objective: Compare the pre- and postoperative visual and refractive results in myopic patients operated with surface techniques and aspheric ablation profile.
Methods: An open randomized controlled experimental study, equivalence and non-inferiority type was carried out in 160 patients (320 eyes). In the study, two groups were formed: the first group was made up of 80 patients (160 eyes), who underwent Photorefractive keratectomy - mitomycin C, and the second group made up of 80 patients (160 eyes), underwent LASEK - mitomycin C.
Results: Women with mild myopia and ages between 21 and 29 years old predominated in both groups. At three months, the Photorefractive keratectomy - mitomycin C group had AVSC 0.97 ± 0.09; sphere 0.003 ± 0.21; cylinder -0.09 ± 0.30 and spherical equivalent -0.04 ± 0, 2. 3. In the Photorefractive keratectomy - mitomycin C group, AVSC 0.96 ± 0.11; sphere -0.007 ± 0.24; cylinder -0.08 ± 0.25 and spherical equivalent -0.06 ± 0.26.
Conclusion: Both surgical techniques improved significantly refractive and visual results, but there was no difference between them.


REFERENCES

  1. Cárdenas T, Li F, Pérez RG, et al. Resultados visuales en la corrección de la alta miopía con implante de lente fáquica ACR-128. Rev Cubana Oftalmol. 2019 [acceso: 15/10/2021];32(2):1-14. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21762019000200003&lng=es

  2. Organización Mundial de la Salud. The impact of myopia and high myopia. Organización Mundial de la Salud; 2017 [acceso: 15/10/2021]. Disponible en: https://www.who.int/blindness/causes/MyopiaReportforweb.pdf

  3. Organización Mundial de la Salud. Informe mundial sobre la visión. Ginebra: Organización Mundial de la Salud; 2020 [acceso: 15/10/2021]. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/331423/9789240000346-spa.pdf

  4. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42. DOI: https://doi.org/10.1016/j.ophtha.2016.01.006

  5. Lantigua I, González Y, Machado E, Torrico M, Padilla C. Resultados del LASIK miópico en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer". Rev Cubana Oftalmol. 2012 [acceso: 15/10/2021];25(1):12-20. Disponible en: http://www.revoftalmologia.sld.cu/index.php/oftalmologia/article/view/90

  6. American Academy of Ophthalmology. Curso de Ciencias Básicas y Clínicas 2015-2016. Sociedad Española de Oftalmología, Pan American Association of Ophthalmology; 2015.

  7. Kuryan J, Cheema A, Chuck RS. Laser-assisted subepithelial keratectomy (LASEK) versus laser-assisted in-situ keratomileusis (LASIK) for correcting myopia (Review). Cochrane Database Syst Rev. 2017;2(2). DOI: https://doi.org/10.1002/14651858.CD011080.pub2

  8. Li SM, Zhan S, Li SY, Peng XX, Hu J, et al. Laser-assisted subepithelial keratectomy (LASEK) versus photorefractive keratectomy (PRK) for correction of myopia. Cochrane Database Syst Rev. 2016;2. DOI: https://doi.org/10.1002/14651858.CD009799.pub2

  9. Hernández Martínez P, Rodríguez del Valle JM. Strabismus-associated myopia. Arch Soc Esp Oftalmol. 2017;92(12):585-93. DOI: https://doi.org/10.1002/j.oftal.2017.06.007

  10. Ausín Villafruela L, Jiménez Pérez J. Análisis de las principales complicaciones de la cirugía refractiva oftalmológica. [Tesis]: Universidad de Valladolid; 2017 [acceso: 15/10/2021]. Disponible en: http://uvadoc.uva.es/handle/10324/25323

  11. Kepez Yildiz B, Goksel Ulas M, Demet Aygit E, Gurez C, Kandemir Besek N, et al. The change in deviation measurements after refractive surgery for partially accommodative strabismus: early postoperative evaluation. Eye J. 2018;3(2):58-62. DOI: https://doi.org/10.14744/bej.2018.57060

  12. García-Moreno M, Albarrán Diego C, Garzón-Jiménez N, Pérez-Cambrodí RJ, López-Artero E, et al. Binocular vision alterations after refractive and cataract surgery: a review. Acta Ophthalmol. 2019;97(2):e145-e55. DOI: https://doi.org/10.1111/aos.13891

  13. Li SM, Zhan S, Li SY, Peng XX, Hu J, et al. Laser-assisted subepithelial keratectomy (LASEK) versus photorefractive keratectomy (PRK) for correction of myopia. Cochrane Database Syst Rev. 2016;2. DOI: https://doi.org/10.1002/14651858.CD009799.pub2

  14. Pérez Suárez RG, Gómez Díaz J, Silva hernández A, Pérez Hernández G, Cárdenas Díaz T, et al. LASEK-mitomicina C versus PRK-mitomicina C en pacientes con miopía o astignatismo miópico compuesto. Rev Cubana Oftalmol. 2019 [acceso: 15/10/2021];32(2):e217. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21762019000200002

  15. Arias S, Tatiana D, et al. Cirugía refractiva con láser de femtosegundo por PRK y LASIK. [Tesis]: Universidad Católica de Cuenca, Facultad de Medicina; 2017 [acceso: 15/10/2021]. Disponible en: https://dspace.ucacue.edu.ec/handle/reducacue/7503

  16. Eliaçik M, Bayramlar H, Erdur SK, Karabela Y, Demirci G, et al. Anterior segment optical coherence tomography evaluation of corneal epithelium healing time after 2 different surface ablation methods. Saudi Med J. 2015;36(1):67-72. DOI: https://doi.org/10.15537/smj.2015.1.9983

  17. Kuo I, Lee B, Wang J. Outcomes of refractive surgery consultations at an Academic Center: Characteristics Associated with Proceeding (or Not Proceeding) with Surgery. J Ophthalmol. 2020;2020. DOI: https://doi.org/10.1155/2020/4354085

  18. Mosquera Bustamante MJ, San Lucas Machuca SS, et al. Relación entre la miopía y la sensibilidad al contraste en pacientes de 15 a 40 años que asisten a la óptica San Alejo, Los Ríos-Babahoyo. [Tesis de grado]: Universidad Técnica de Babahoyo; 2019 [acceso: 15/10/2021]. Disponible en: http://dspace.utb.edu.ec/handle/49000/5875

  19. Mifflin MD, Betts BS, et al. High myopic photorefractive keratectomy outcomes with the Alcon Wavelight EX500 excimer laser. Clin Ophthalmol. 2018;12:1041-8. DOI: https://doi.org/ 10.2147/OPTH.S164110

  20. Wu PL, Lee CY, Cheng HC, et al. Correction of myopic astigmatism with topography-guide Laser in situ keratomileusis (Topolink). Healthcare. 2020;8(4):477. DOI: https://doi.org/ 10.3390/healthcare8040477

  21. Hashemi H, Fotouhi A, Foudazi H, Sadeghi N, Payvar S. Prospective, randomized, paired comparison of laser epithelial keratomileusis and photorefractive keratectomy for myopia less than -6.50 diopters. J Refract Surg. 2004 [acceso: 15/10/2021];20(3):217-22. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15188897/

  22. American Academy of Ophthalmology. Basic and Clinical Science Course 2018-2019 (Sección 13 Refractive Surgery: Photoablation: Techniques and Outcomes). San Francisco: American Academy of Ophthalmology; 2018.

  23. Valeria Rey D, Moreno-Montoy J. Resultado visual a los tres meses de cirugía con LASEK. Rev Mex Oftalmol. 2017 [acceso: 15/10/2021];91(5):247-53. DOI: http://dx.doi.org/10.1016/j.mexoft.2016.07.007

  24. Mori Y, Miyata K, Ono T, Yagi Y, Kamiya K, et al. Comparison of laser in situ ketatomileusis and photorefractive keratectomy for myopia using a mixed-effects model. PLoS ONE. 2017;12(3). DOI: https://doi.org/10.1371/journal




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Oftal. 2021;34