medigraphic.com
SPANISH

Revista de Ciencias Médicas de Pinar del Río

ISSN 1561-3194 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 5

<< Back Next >>

Rev Ciencias Médicas 2021; 25 (5)

Study of uncertainties in radiotherapy to prostate cancer patients with cone-beam computed tomography on a day-to day basis

Chunga-Palomino SL
Full text How to cite this article

Language: Spanish
References: 40
Page: 1-16
PDF size: 667.13 Kb.


Key words:

prostatic neoplasms, adenocarcinoma, radiotherapy setup errors, tomography x-ray computed, patient.

ABSTRACT

Introduction: radiations with therapeutic aims have revolutionized medicine, particularly radiation technologies for the treatment of cancer. Objective: to determine the margin of errors of the configuration and the movement of organs in determining the position of Clinical Target Volume using kilovoltage cone-beam computed tomography in the treatment of prostate cancer, as well as to quantify the movement of organs during the planned therapy of prostate obtained by a margin for the prostate. Methods: an experimental research, the radio-therapeutic method on a day-to day basis was taken on. Patients registered from January to April 2017 on Cancer Radiotherapy from the University Hospital of Verona University in Italy, with prostate adenocarcinoma stages T1 to T4; and who were treated using volumetric modulated arch therapy. Results: making use of Van Herk’s formula to position the margin of prostate, it was observed that in the craniocaudal and lateral direction there are small scatterings, and in the anteroposterior direction the degree of scattering is greater, being related to rectal filling, bladder movement and peristalsis of the patient. Finding the required margins for the prostate between CTV and PTV would be in the craniocaudal direction 3,3 mm, lateral 3,7 mm and anteroposterior 4,4 mm. Conclusions: cone-beam computed tomography is a precise tool to guide the images; it provides an equivalent approach of correction of the configuration for prostate cancer patients.


REFERENCES

  1. Muñoz Á. Personalidades históricas de la radioterapia. Revista Medicina [Internet]. 2021 [citado 28/8/2021]; 43(1): 11-17. Disponible en: Disponible en: http://revistamedicina.net/ojsanm/index.php/Medicina/article/view/1580

  2. Raaymakers B W, Jürgenliemk-Schulz I M, Bol G H, Glitzner M, Kotte A N T J, Van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol [Internet]. 2017 [citado 28/8/2021]; 62(23): 41-50. Disponible en: Disponible en: https://doi.org/10.1088/1361-6560/aa9517

  3. Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal [Internet]. 2018 [citado 28/8/2021]; 29(15): 1447-1487. Disponible en: Disponible en: http://doi.org/10.1089/ars.2017.7267

  4. Van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med. Phys [Internet]. 1994 [citado 28/8/2021]; 21(7): 1163-1178. Disponible en: Disponible en: https://doi.org/10.1118/1.597344

  5. Zhong R, Song Y, Yang Y, Wang X, Li S, Zhou J, et al. Analysis of which local set-up errors can be covered by a 5-mm margin for cone beam CT-guided radiotherapy for nasopharyngeal carcinoma. Br J Radiol [Internet]. 2018 [citado 28/8/2021]; 91(1088): 20160849. Disponible en: Disponible en: http://doi.org/10.1259/bjr.20160849

  6. Meier V, Staudinger C, Radonic S, Besserer J, Schneider U, Walsh L, et al. Reducing margins for abdominopelvic tumours in dogs: Impact on dose‐coverage and normal tissue complication probability. Vet Comp Oncol [Internet]. 2021 [citado 28/8/2021]; 19(2): 266-274. Disponible en: Disponible en: http://doi.org/10.1111/vco.12671

  7. Castro P, Roch M, Zapatero A, Buchser D, Garayoa J, Anson C, et al. Multicomponent Assessment of the Geometrical Uncertainty and Consequent Margins in Prostate Cancer Radiotherapy Treatment Using Fiducial Markers. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology [Internet]. 2018 [citado 28/8/2021]; 7(4): 503-521. Disponible en: Disponible en: https://doi.org/10.4236/ijmpcero.2018.74043

  8. García-Mollá R, Sánchez Rubio P, Bonaque Alandí J, Carrasco Herrera MA, Lliso Valverde F. Implementación y uso clínico de la radioterapia adaptativa. Informe del grupo de trabajo de radioterapia adaptativa de la Sociedad Española de Física Médica (SEFM). Rev Fis Med [Internet]. 2021 [citado 28/8/2021]; 22(1): 123-66. Disponible en: Disponible en: https://doi.org/10.37004/sefm/2021.22.1.004

  9. Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol [Internet] 2019 [citado 28/8/2021]; 9(4): 200-207. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30562614/

  10. Basu T, Goldsworthy S, Gkoutos GV. A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information [Internet]. 2021 [citado 28/8/2021]; 12(4): 139. Disponible en: Disponible en: https://doi.org/10.3390/info12040139

  11. Kershaw L, Van Zadelhoff L, Heemsbergen W, Pos F, Van Herk M. Image guided radiation therapy strategies for pelvic lymph node irradiation in high-risk prostate cancer: motion and margins. Int J Radiat Oncol Biol Phys [Internet]. 2018 [citado 28/8/2021]; 100(1): 68-77. Disponible en: Disponible en: http://doi.org/10.1016/j.ijrobp.2017.08.044

  12. Banos‐Capilla MC, Lago-Martin JD, Gil P, Larrea LM. Sensitivity and specificity analysis of 2D small field measurement array: Patient‐specific quality assurance of small target treatments and spatially fractionated radiotherapy. J Appl Clin Med Phys [Internet]. 2021 [citado 28/8/2021]; 22(10): 104-119. Disponible en: Disponible en: http://doi.org/10.1002/acm2.13402

  13. Guzmán-Rivera JV, Alvira-Guauña DC. Efectos secundarios de las ter apias oncológicas en pacientes con cáncer de cérvix. Rev. cienc. cui dad [Internet]. 2021 [citado 28/8/2021]; 18(2): 55-68. Disponible en: Disponible en: https://doi.org/10.22463/17949831.2842

  14. Thaper D, Oinam AS, Kamal R, Singh G, Handa B, Kumar V, et al. Interplay effect modeling in stereotactic body radiotherapy treatment of liver cancer using volumetric modulated arc therapy. Phys Eng Sci Med [Internet]. 2021 [citado 28/8/2021]; 44(1): 123-134. Disponible en: Disponible en: http://doi.org/10.1007/s13246-020-00961-5

  15. Sanchez Forero RA, Olejua Villa PA, Rocha Morales A, Murillo R. Evaluación de Errores de Posicionamiento en los 6 Grados de Libertad en Pacientes con Cáncer de próstata tratados con radioterapia. Urol Colomb [Internet]. 2021 [citado 28/8/2021]; 30(1): 23-33. Disponible en: Disponible en: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0040-1714726

  16. Dai X, Lei Y, Wang T, Dhabaan AH, McDonald M, Beitler JJ, et al. Synthetic MRI-aided Head-and-Neck Organs-at-Risk Auto-Delineation for CBCT-guided Adaptive Radiotherapy. arXiv [Internet]. 2020 [citado 28/8/2021]; 1. Disponible en: Disponible en: https://arxiv.org/pdf/2010.04275.pdf

  17. Pokhrel D, Sanford L, Halfman M, Molloy J. Potential reduction of lung dose via VMAT with jaw tracking in the treatment of single‐isocenter/two‐lesion lung SBRT. J Appl Clin Med Phys [Internet]. 2019 [citado 28/8/2021]; 20(5): 55-63. Disponible en: Disponible en: http://doi.org/10.1002/acm2.12580

  18. Patni N, Burela N, Pasricha R, Goyal J, Soni TP, Kumar TS, et al. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins. J Cancer Res Ther [Internet]. 2017 [citado 28/8/2021]; 13(1): 131-136. Disponible en: Disponible en: http://doi.org/10.4103/0973-1482.199451

  19. Lee DS, Lee YK, Kang YM, Won YG, Park S, Kim Y, et al. Assessment of planning reproducibility in three-dimensional field-in-field radiotherapy technique for breast cancer: impact of surgery-simulation interval. Sci Rep [Internet]. 2021 [citado 28/8/2021]; 11(1): 1556. Disponible en: Disponible en: http://doi.org/10.1038/s41598-020-78666-8

  20. Chen Z, Yang Z, Wang J, Hu W. Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiat Oncol [Internet]. 2016 [citado 28/8/2021]; 11(103). Disponible en: Disponible en: https://doi.org//10.1186/s13014-016-0681-z

  21. Muñoz Á. Personalidades históricas de la radioterapia. Revista Medicina [Internet]. 2021 [citado 28/8/2021]; 43(1): 11-17. Disponible en: Disponible en: http://revistamedicina.net/ojsanm/index.php/Medicina/article/view/1580

  22. Raaymakers B W, Jürgenliemk-Schulz I M, Bol G H, Glitzner M, Kotte A N T J, Van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol [Internet]. 2017 [citado 28/8/2021]; 62(23): 41-50. Disponible en: Disponible en: https://doi.org/10.1088/1361-6560/aa9517

  23. Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal [Internet]. 2018 [citado 28/8/2021]; 29(15): 1447-1487. Disponible en: Disponible en: http://doi.org/10.1089/ars.2017.7267

  24. Van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med. Phys [Internet]. 1994 [citado 28/8/2021]; 21(7): 1163-1178. Disponible en: Disponible en: https://doi.org/10.1118/1.597344

  25. Zhong R, Song Y, Yang Y, Wang X, Li S, Zhou J, et al. Analysis of which local set-up errors can be covered by a 5-mm margin for cone beam CT-guided radiotherapy for nasopharyngeal carcinoma. Br J Radiol [Internet]. 2018 [citado 28/8/2021]; 91(1088): 20160849. Disponible en: Disponible en: http://doi.org/10.1259/bjr.20160849

  26. Meier V, Staudinger C, Radonic S, Besserer J, Schneider U, Walsh L, et al. Reducing margins for abdominopelvic tumours in dogs: Impact on dose‐coverage and normal tissue complication probability. Vet Comp Oncol [Internet]. 2021 [citado 28/8/2021]; 19(2): 266-274. Disponible en: Disponible en: http://doi.org/10.1111/vco.12671

  27. Castro P, Roch M, Zapatero A, Buchser D, Garayoa J, Anson C, et al. Multicomponent Assessment of the Geometrical Uncertainty and Consequent Margins in Prostate Cancer Radiotherapy Treatment Using Fiducial Markers. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology [Internet]. 2018 [citado 28/8/2021]; 7(4): 503-521. Disponible en: Disponible en: https://doi.org/10.4236/ijmpcero.2018.74043

  28. García-Mollá R, Sánchez Rubio P, Bonaque Alandí J, Carrasco Herrera MA, Lliso Valverde F. Implementación y uso clínico de la radioterapia adaptativa. Informe del grupo de trabajo de radioterapia adaptativa de la Sociedad Española de Física Médica (SEFM). Rev Fis Med [Internet]. 2021 [citado 28/8/2021]; 22(1): 123-66. Disponible en: Disponible en: https://doi.org/10.37004/sefm/2021.22.1.004

  29. Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol [Internet] 2019 [citado 28/8/2021]; 9(4): 200-207. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/30562614/

  30. Basu T, Goldsworthy S, Gkoutos GV. A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information [Internet]. 2021 [citado 28/8/2021]; 12(4): 139. Disponible en: Disponible en: https://doi.org/10.3390/info12040139

  31. Kershaw L, Van Zadelhoff L, Heemsbergen W, Pos F, Van Herk M. Image guided radiation therapy strategies for pelvic lymph node irradiation in high-risk prostate cancer: motion and margins. Int J Radiat Oncol Biol Phys [Internet]. 2018 [citado 28/8/2021]; 100(1): 68-77. Disponible en: Disponible en: http://doi.org/10.1016/j.ijrobp.2017.08.044

  32. Banos‐Capilla MC, Lago-Martin JD, Gil P, Larrea LM. Sensitivity and specificity analysis of 2D small field measurement array: Patient‐specific quality assurance of small target treatments and spatially fractionated radiotherapy. J Appl Clin Med Phys [Internet]. 2021 [citado 28/8/2021]; 22(10): 104-119. Disponible en: Disponible en: http://doi.org/10.1002/acm2.13402

  33. Guzmán-Rivera JV, Alvira-Guauña DC. Efectos secundarios de las ter apias oncológicas en pacientes con cáncer de cérvix. Rev. cienc. cui dad [Internet]. 2021 [citado 28/8/2021]; 18(2): 55-68. Disponible en: Disponible en: https://doi.org/10.22463/17949831.2842

  34. Thaper D, Oinam AS, Kamal R, Singh G, Handa B, Kumar V, et al. Interplay effect modeling in stereotactic body radiotherapy treatment of liver cancer using volumetric modulated arc therapy. Phys Eng Sci Med [Internet]. 2021 [citado 28/8/2021]; 44(1): 123-134. Disponible en: Disponible en: http://doi.org/10.1007/s13246-020-00961-5

  35. Sanchez Forero RA, Olejua Villa PA, Rocha Morales A, Murillo R. Evaluación de Errores de Posicionamiento en los 6 Grados de Libertad en Pacientes con Cáncer de próstata tratados con radioterapia. Urol Colomb [Internet]. 2021 [citado 28/8/2021]; 30(1): 23-33. Disponible en: Disponible en: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0040-1714726

  36. Dai X, Lei Y, Wang T, Dhabaan AH, McDonald M, Beitler JJ, et al. Synthetic MRI-aided Head-and-Neck Organs-at-Risk Auto-Delineation for CBCT-guided Adaptive Radiotherapy. arXiv [Internet]. 2020 [citado 28/8/2021]; 1. Disponible en: Disponible en: https://arxiv.org/pdf/2010.04275.pdf

  37. Pokhrel D, Sanford L, Halfman M, Molloy J. Potential reduction of lung dose via VMAT with jaw tracking in the treatment of single‐isocenter/two‐lesion lung SBRT. J Appl Clin Med Phys [Internet]. 2019 [citado 28/8/2021]; 20(5): 55-63. Disponible en: Disponible en: http://doi.org/10.1002/acm2.12580

  38. Patni N, Burela N, Pasricha R, Goyal J, Soni TP, Kumar TS, et al. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins. J Cancer Res Ther [Internet]. 2017 [citado 28/8/2021]; 13(1): 131-136. Disponible en: Disponible en: http://doi.org/10.4103/0973-1482.199451

  39. Lee DS, Lee YK, Kang YM, Won YG, Park S, Kim Y, et al. Assessment of planning reproducibility in three-dimensional field-in-field radiotherapy technique for breast cancer: impact of surgery-simulation interval. Sci Rep [Internet]. 2021 [citado 28/8/2021]; 11(1): 1556. Disponible en: Disponible en: http://doi.org/10.1038/s41598-020-78666-8

  40. Chen Z, Yang Z, Wang J, Hu W. Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiat Oncol [Internet]. 2016 [citado 28/8/2021]; 11(103). Disponible en: Disponible en: https://doi.org//10.1186/s13014-016-0681-z




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Ciencias Médicas. 2021;25