medigraphic.com
SPANISH

Ginecología y Obstetricia de México

Federación Mexicana de Ginecología y Obstetricia, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 09

<< Back Next >>

Ginecol Obstet Mex 2023; 91 (09)

Maternal diabetes and zinc deficiency, risks for the offspring

Gómez HT, Bequer ML, Clapés HS
Full text How to cite this article

Language: Spanish
References: 61
Page: 669-678
PDF size: 243.71 Kb.


Key words:

Zinc, Pregnancy in Diabetics, Risk Factors, Abnormalities, Oxidative Stress, Epigenetic.

ABSTRACT

Background: When pregnant women are deficient in zinc, this deficiency may be a contributing factor to foetal disorders, such as congenital malformations and other developmental disorders.
Objective: To identify the relevant aspects of the current state of knowledge of the complications of diabetes in pregnant women and zinc deficiency in the foetus. In addition, to explain the possible consequences of micronutrient deficiency, among other underlying molecular causes.
Methodology: Bibliographic review carried out in Google, PubMed-Medline and SciELO databases of articles published in English or Spanish from 2012 to 2022, with the MeSH: Maternal diabetes; Hyperglycemia; Zinc deficiency; Congenital malformations; Epigenetics; with their corresponding translation into Spanish. Selection criteria: original articles, prospective studies, literature reviews, meta-analyses, book chapters and reports of the American Diabetes Association (ADA) and the Latin American Diabetes Association (ALAD).
Results: 187 articles were located of which 126 unsuitable for the review topic, duplicates or in language other than English and Spanish were excluded.
Conclusions: The literature review evidenced that metabolic disorders caused by maternal hyperglycemia, zinc deficiency, alteration of its homeostasis and its interaction with redox imbalance, low-grade inflammation, apoptotic activation and epigenetic modifications produce an adverse intrauterine environment that conditions the appearance of malformations and other developmental disorders in the offspring.


REFERENCES

  1. Brajkovich IE, Aschner P, Taboada L, Camperos P, et al.Consenso ALAD. Tratamiento del paciente con diabetesmellitus tipo 2 y obesidad. Revista ALAD 2019; 9.https://doi.org/10.24875/ALAD.19000369

  2. ALAD. Asociación Latinoamericana de Diabetes. GuíasALAD sobre el diagnóstico, control y tratamiento de ladiabetes mellitus tipo 2 con medicina basada en evidencia.Revista ALAD 2019; https://www.revistaalad.com/guias/5600AX191_guias_alad_2019.pdf

  3. ADA. American Diabetes Association. Classificationand diagnosis of diabetes: Standards of medical care indiabetes. Diabetes Care 2022; 45 (Suppl 1): S17-S38.https://doi.org/10.2337/dc21-S

  4. Silva CM, Arnegard ME, Maric-Bilkan C. Dysglycemiain pregnancy and maternal/fetal outcomes. J WomensHealth 2021; 30 (2): 187-93. https://doi.org/10.1089/jwh.2020.8853

  5. 5Rodas W, Mawyin AE, Gómez JL, Rodríguez CV, etal. Diabetes gestacional: fisiopatología, diagnóstico,tratamiento y nuevas perspectivas. Arch Venez deFarmacol y Ter 2018; 37 (3). https://www.redalyc.org/journal/559/55963208008/55963208008.pdf

  6. Rashid CS, Bansal A, Simmons RA. Oxidative stress,intrauterine growth restriction, and developmentalprogramming of type 2 diabetes. Physiology2018; 33(5):248-59. https://doi.org/10.1152/physiol.00023.2018

  7. Vigil P, Olmedo J. Diabetes gestacional: conceptosactuales. Ginecol Obstet Mex 2017; 85 (6): https://ginecologiayobstetricia.org.mx/download/1120

  8. Moore LE. Fetal and neonatal consequences of maternaldiabetes. 2018. In: Diabetes in Pregnancy Texas: Springer.https://cpncampus.com/biblioteca/files/original/ed769533711e833a0436440659637ad7.pdf.

  9. Zabihi S, Loeken MR. Understanding diabetic teratogenesis:Where are we now and where are we going? BirthDefects Res A Clin Mol Teratol 2018; 88 (10): 779-90.https://doi.org/10.1002/bdra.20704

  10. Eletri L, Mitanchez D. How do the different types ofmaternal diabetes during pregnancy influence offspringoutcomes? Nutrients 2022; 14 (3870). https://doi.org/10.3390/nu14183870

  11. Kumar SD, Vijaya M, Samy RP, Dheen ST, et al. Zincsupplementation prevents cardiomyocyte apoptosis andcongenital heart defects in embryos of diabetic mice.Free Radic Biol Med 2012; 53 (8): 1595-606. https://doi.org/10.1016/j.freeradbiomed.2012.07.008

  12. Negrato CA, Marques PR, Leite HB, Torigoe CN, et al.Glycemic and nonglycemic mechanisms of congenitalmalformations in hyperglycemic pregnancies: a narrativereview. Archives of Endocrinology and Metabolism2022; 66 (6): 908-18. https://doi.org/10.20945/2359-3997000000521

  13. Li H, Zhang J, Niswander L. Zinc deficiency causesneural tube defects through attenuation of p53ubiquitylation. Development 2018; 45. https://doi.org/10.1242/dev.169797

  14. Castellón D, Garcia M, Bequer L, Freire C, et al. Efectosobre el peso fetal de la suplementación con zinc a ratasdiabéticas gestadas. Medicent Elecrón 2022; 26 (3).http://www.medicentro.sld.cu/index.php/medicentro/article/view/3504/2956

  15. Iqbal S, Ali I. Effect of maternal zinc supplementation orzinc status on pregnancy complications and perinataloutcomes: An umbrella review of meta-analyses. Heliyon2021; 7 (7). https://doi.org/10.1016/j.heliyon.2021.e07540

  16. 1Shams AS, Mohammed MH, Loka MM, Abdel RahmanGM. Assessment of the protective role of prenatal zincversus insulin supplementation on fetal cardiac damageinduced by maternal diabetes in rat using caspase-3and KI67 immunohistochemical stains. Cardiol ResPract 2016. http://dx.doi.org/10.1155/2016/7469549

  17. Çelikel OO, Doğan O, Aksoy N. A multilateral investigationof the effects of zinc level on pregnancy. J ClinLab Anal 2018; 32. https://doi.org/10.1002/jcla.22398

  18. Taboada N, Mollineda A, Herrera M. Serum copper,zinc, calcium and magnesium levels in mothers withoffspring affected by neural tube defects: a case-controlstudy. Rev Cuba de Investig Biomed 2019; 38 (1). https://www.medigraphic.com/pdfs/revcubinvbio/cib-2019/cib191g.pdf

  19. Demirtas MS. The pathogenesis of congenital anomalies:Roles of teratogens and infections. In: Verma RP,editor. Congenital anomalies in newborn infants. London: IntechOpen 2020; 57-83. https://doi.org/10.5772/intechopen.92580

  20. Garner TB, Hester JM, Carothers A, Diaz FJ. Role ofzinc in female reproduction. Biol Reprod 2021; 104(5): 976-94. https://doi.org/10.1093/biolre/ioab023

  21. Mendes F, Gobetto MN, Casta A, Lucero D, et al.Fetal and postnatal zinc restriction: Sex differences inmetabolic alterations in adult rats. Nutrition 2019; 65(1): 18-26. https://doi.org/10.1016/j.nut.2019.01.022

  22. Wilson RL, Leemaqz SY, Goh Z, McAninch D, et al.Zinc is a critical regulator of placental morphogenesisand aternal hemodynamics during pregnancy in mice.Sci Rep 2017; 7 (1): 1-14. https://doi.org/10.1038/s41598-017-15085-2

  23. Fukunaka A, Fujitani Y. Role of zinc homeostasis in thepathogenesis of diabetes and obesity. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19020476

  24. Lawson R, Maret W, Hogstrand C. ZnT8 haploinsuffiencyimpacts MIN6 cell zinc content and -cell phenotypevia ZIP-ZnT8 coregulation. Int J Mol Sci 2019; 20.https://doi.org/10.3390/ijms20215485

  25. MacKenzie S, Bergdahl A. Zinc homeostasis in diabetesmellitus and vascular complications. Biomedicines2022; 10. https://doi.org/10.3390/biomedicines10010139

  26. Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc stimulatesglucose oxidation and glycemic control bymodulating the insulin signaling pathway in humanand mouse skeletal muscle cell lines. PLoS One 2018;13.https://doi.org/10.1371/journal.pone.0191727

  27. Huang L, Tepaamorndech S, Kirschke CP, Newman JW,et al. Aberrant fatty acid metabolism in skeletal musclecontributes to insulin resistance in zinc transporter 7 (Znt7)-knockout mice. Biol Chem 2018; 293 (20): 7549-63. https://doi.org/10.1074/jbc.M117.817692

  28. Norouzi S, Adulcikas J, Henstridge D, Sonda S, et al. Thezinc transporter Zip7 is downregulated in skeletal muscleof insulin-resistant cells and in mice fed a high-fat diet.Cells 2019; 8. https://doi.org/10.3390/cells8070663

  29. Huang Q, Du J, Merriman C, Gong Z. Genetic,functional, and immunological study of ZnT8in diabetes. Int J Endocrinol 2019. https://doi.org/10.1155/2019/1524905

  30. Ullah R, Shehzad A, Shah MA, March M, et al. CTerminaldomain of the human zinc transporter hZnT8is structurally indistinguishable from its disease riskvariant (R325W). Int J Mol Sci 2020; 21. http://www.mdpi.com/1422-0067/21/3/926

  31. Prabhakar SM. Linkage of a plasma zinc signature andimpaired insulin receptor activation: Implications for themechanism of type 2 diabetes mellitus. bioRxiv 2019.https://doi.org/10.1101/849091

  32. Poudel RR, Bhusal Y, Tharu B, Kafle NK. Roleof zinc in insulin regulation and diabetes. J SocHealth Diabetes 2017; 5 (1): 83-7. https://doi.org/10.1055/s-0038-1676241

  33. Gómez T, Bequer L, Mollineda A, Molina JL, et al.Concentration of zinc, copper, iron, calcium andmagnesium in the serum, tissues and urine of streptozotocin-induced mild-diabetic rat model. Biol TraceElem Res 2017; 179: 237-46. https://doi.org/10.1007/s12011-017-0962-x

  34. Villota D, Casillas M, Morales MP, Farías M, MayagoitiaC. Desenlace materno-fetal en pacientes condiagnóstico temprano o tardío de diabetes gestacional.Ginecol Obstet Mex 2019; 87 (12): 785-91. https://doi.org/10.24245/gom.v87i12.3255

  35. Ornoy A, Reece EA, Pavlinkova G, Kappen C, et al.Effect of maternal diabetes on the embryo, fetus, andchildren: Congenital anomalies, genetic and epigeneticchanges and developmental outcomes. Birth DefectsRes 2015; 105 (1): 53-72. https://doi.org/10.1002/bdrc.21090

  36. Bhandari J, Thada PK, Khattar D. Diabetic embryopathy.Treasure Island (FL): StatPearls Publishing; 2022. https://europepmc.org/article/nbk/nbk558974#free-full-text.

  37. Modzelewski R, Stefanowicz-Rutkowska MM, MatuszewskiW, Bandurska-Stankiewicz EM. Gestationaldiabetes mellitus. Recent literature review. Clin Med2022; 11 (19). https://doi.org/10.3390/jcm11195736

  38. Jawerbaum A, White V. Review on intrauterine programming:Consequences in rodent models of milddiabetes and mild fat overfeeding are not mild. Placenta2017; 52 (1): 21-32. https://doi.org/10.1016/j.placenta.2017.02.009

  39. Ogunsola O, Arikawe A, Iranloye B, Adegoke O. Maternalserum progesterone levels and placental expressionof progesterone receptors in insulin-resistant pregnantrats. J Afr Ass Physiol Sci 2019; 7 (2). https://www.ajol.info/index.php/jaaps/article/view/192648

  40. Dela-Justina V, San-Martin S, López-Espíndola D, BressanA, Alves de Freitas R, Lopes de Passos AM, et al.Increased expression of STAT3 and SOCS3 in placentafrom hyperglycemic rats. Eur J Histochem 2019; 63 (4):222-28. https://doi.org/10.4081/ejh.2019.3054

  41. Clapés S, Fernández T, Suárez G. Oxidative stress andbirth defects in infants of women with pregestationaldiabtes. Medicc Review 2013; 15 (1): 37-40. https://doi.org/10.37757/MR2013V15.N1.9

  42. Moore LE. Preconception counseling. 2018. In:Diabetes in Pregnancy Texas: Springer InternationalPublishing AG. https://cpncampus.com/biblioteca/files/original/ed769533711e833a0436440659637ad7.pdf.

  43. Gómez T, García M, Bequer L, Freire C, Aimee VilaM, Clapés C. Malformaciones esqueléticas y alteracionesdel crecimiento en fetos de ratas con diabetesmoderada. Biomédica 2021; 41 (3): 1-7. https://doi.org/10.7705/biomedica.5736

  44. Castori M. Diabetic embryopathy: A developmentalperspective from fertilization to adulthood.Mol Syndromol 2013; 4 (2): 74-86. https://doi.org/10.1159/000345205

  45. Clapés S, Fernández T, Prado K. El desafío para el desarrollodel sistema nervioso central en la reproducciónhumana asociada con la diabetes. Revista Cubana deEndocrinología 2022; 33 (1). http://www.revendocrinologia.sld.cu/index.php/endocrinologia/article/view/310

  46. Wang X, Lu J, Xie W, Lu X, Liang Y, Li M, et al.Maternal diabetes induces autism-like behavior byhyperglycemia-mediated persistent oxidative stressand suppression of superoxide dismutase 2. Proc NatlAcad Sci USA 2019; 116 (47): 23743-52. https://doi.org/10.1073/pnas.1912625116

  47. Khamis A, Canouil M, Keikkala E, Hummel S, Bonnefond,A, Delahaye F, et al. Both gestational diabetesexposure and maternal methylome interaction impactoffspring epigenetic signature. Diabet 2021; 9 (1): 34-36. https://emj.emg-health.com/wp-content/uploads/sites/2/2021/11/Both-Gestational-Diabetes-Exposureand-Maternal-Methylome-Interaction-Impact-Offspring-Epigenetic-Signature.pdf

  48. Bequer L, Gómez T, Molina J, Álvarez A, et al. Experimentaldiabetes impairs maternal reproductive performancein pregnant Wistar rats and their offspring. SystBiol Reprod Med 2018; 64 (1): 7. https://doi.org/10.1080/19396368.2017.1395928

  49. Gatti CR, Roberti SL, Capobianco E, Gómez D, et al.Decidual abnormalities in the prepubertal period and atday 9 of pregnancy in diabetic rat offspring. Univ Med2020; 2020. https://revistas.javeriana.edu.co/index.php/vnimedica/article/view/31046

  50. Gómez T, Bequer L, Mollineda A, González O, et al.Serum zinc levels of cord blood: Relation to birth weightand gestational period. J Trace Elem Med Biol 2015; 30:180-3. http://dx.doi.org/10.1016/j.jtemb.2014.12.009

  51. Mendes F, Caniffi C, Arranz CT, Tomat AL. Impact ofzinc deficiency during prenatal and/or postnatal life oncardiovascular and metabolic diseases: Experimentaland clinical evidence. Adv Nutr 2022; 13 (3): 833-45.https://doi.org/10.1093/advances/nmac012

  52. Juriol LV, Gobetto MN, Mendes F, Dasso ME, et al.Cardiac changes in apoptosis, inflammation, oxidativestress, and nitric oxide system induced by prenatal andpostnatal zinc deficiency in male and female rats. EurJ Nutr 2016; 57 (2): 569-83. http://doi.org/10.1007/s00394-016-1343-5

  53. Adamo AM, Liu X, Mathieu P, Nuttall JR, et al. Earlydevelopmental marginal zinc deficiency affects neurogenesisdecreasing neuronal number and alteringneuronal specification in the adult rat brain. Front CellNeurosci 2019; 13 (62): 52-63. https://doi.org/10.3389/fncel.2019.00062

  54. Choi S, Hong DK, Choi BY, Suh WS. Zinc in the brain:Friend or foe? Int J Mol Sci 2020; 21. https://doi.org/10.3390/ijms21238941

  55. Zuccarello D, Sorrentino U, Brasson V, Marin L, et al.Epigenetics of pregnancy: looking beyond the DNAcode. J Assist Reprod Genet 2022; 39: 801-16. https://doi.org/10.1007/s10815-022-02451-x

  56. Higa R, Leonardi ML, Jawerbaum A. Intrauterineprogramming of cardiovascular diseases in maternaldiabetes. Diabetes Front Physiol 2021; 12. https://doi.org/10.3389/fphys.2021.760251

  57. Brito S, Lee M, Bin B, Lee J. Zinc and its transportersin epigenetics. Mol Cells 2020; 43 (4): 323-30. https://doi.org/10.14348/molcells.2020.0026

  58. Seman NA, Mohamud WN, Östenson C, Brismar K, etal. Increased DNA methylation of the SLC30A8 genepromoter is associated with type 2 diabetes in a Malaypopulation. Clin Epigenetics 2015; 7 (1): 15-30. https://doi.org/10.1186/s13148-015-0049-5

  59. Yusuf AP, Abubakar MB, Malami I, Ibrahim KG, et al.Zinc metalloproteins in epigenetics and their crosstalk.Life Sci 2021; 11 (3): 186. https://doi.org/10.3390/life11030186

  60. Tiffon C. The impact of nutrition and environmentalepigenetics on human health and disease. Int J MolSci 2018; 19. https://doi.org/10.3390/ijms19113425

  61. Zhang Y, Kutateladze TG. Diet and the epigenome.Nat Commun 2018; 9: 3375. https://doi.org/10.1038/s41467-018-05778-1




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Ginecol Obstet Mex. 2023;91