medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)

Conditions of the transesterification process in the production of biodiesel and its different reaction mechanisms

Pérez-Bravo SG, Aguilera-Vázquez L, Castañeda-Chávez MR, Gallardo-Rivas NV
Full text How to cite this article

Language: Spanish
References: 62
Page: 1-19
PDF size: 693.81 Kb.


Key words:

biodiesel, transesterification, catalysis, operating conditions, reaction mechanisms.

ABSTRACT

Biofuels are a viable alternative to the partial or total replacement of fossil fuels, biodiesel is an ideal substitute for diesel as it can be used without modifying existing engines and offers a safe distribution process. In this review, the raw materials used in recent years for their production by the transesterification method are summarized, as well as the effect that the operating conditions have on the reaction yield, in addition to integrating the reaction mechanisms with base catalysis, acid and the heterogeneous catalyst CaO. Transesterification has been studied and modified, from the conventional process to the application of ultrasound, in supercritical conditions and in situ. The ideal process will depend on the available raw materials and equipment, using the least amount of energy, time and inputs, one of the most promising is transesterification with ultrasound and heterogeneous catalyst.


REFERENCES

  1. . Aransiola, E. F., Daramola, M. O., Ojumu, T. V., Solomon, B.O. & Layokun, S. K. (2013). Homogeneously catalizedtransesterification of nigerian Jatropha curcas oil intobiodiesel: a kinetic study. Modern Research in Catalisys,

  2. 2, 83-89. http://dx.doi.org/10.4236/mrc.2013.230122. Akubude, V. C., Nwaigwe, K. N. & Dintwa, E. (2019).Production of biodiesel from microalgae via nanocatalyzedtransesterification process: A review. Materials Sciencefor Energy Technologies, 2 (2), 216–225. https://doi.org/10.1016/j.mset.2018.12.006

  3. Avhad, M. R. & Marchetti, J. M. (2015). A review on recentadvancement in catalytic materials for biodiesel production.Renewable. Sustainable. Energy Rev., 50, 696–718. https://doi.org/10.1016/j.rser.2015.05.038

  4. Behera, B., Selvam S, M., Dey, B. & Balasubramanian,P. (2020). Algal biodiesel production with engineeredbiochar as a heterogeneous solid acid catalyst. BioresourceTechnology, 310 (2020), 123392. https://doi.org/10.1016/j.biortech.2020.123392

  5. Bhangu, S. K., Gupta, S. & Ashokkumar, M. (2017). Ultrasonicenhancement of lipase-catalysed transesterification forbiodiesel synthesis. Ultrasonics Sonochemistry, 34, 305-309. https://doi.org/10.1016/j.ultsonch.2016.06.005

  6. Cordero Ravelo, V. & Schallenberg Rodriguez, J. (2018).Biodiesel production as a solution to waste cookingoil (WCO) disposal. Will any type of WCO do for atransesterification process? A quality assessment. Journalof Environmental Management, 228, 117–129. https://doi.org/10.1016/j.jenvman.2018.08.106

  7. Carmona Cabello, M., Sáez Bastante, J., Pinzi, S. & Dorado,M. P. (2019). Optimization of solid food waste oil biodieselby ultrasound-assisted transesterification. Fuel, 255(May),115817. https://doi.org/10.1016/j.fuel.2019.115817

  8. Chhabra, M., Dwivedi, G., Baredar, P., Kumar Shukla, A.,Garg, A. & Jain, S. (2021). Production & optimization ofbiodiesel from rubber oil using BBD technique. MaterialsToday: Proceedings, 38 (1), 69-73. https://doi.org/10.1016/j.matpr.2020.05.791

  9. Christopher, L. P., Hemanathan Kumar & Zambare, V. P.(2014). Enzymatic biodiesel: Challenges and opportunities.Applied Energy, 119, 497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

  10. Daramola, M. O., Mtshali, K., Senokoane, L. & Fayemiwo,O. M. (2016). Influence of operating variables on thetransesterification of waste cooking oil to biodiesel oversodium silicate catalyst: a statistical approach. Journal ofTaibah University for Science, 10, 675-684. http://dx.doi.org/10.1016/j.jtusci.2015.07.008

  11. Dey, S., Reang, N. M., Das, P. K. & Deb, M. (2021). Acomprehensive study on prospects of economy, environment,and efficiency of palm oil biodiesel as a renewable fuel.Journal of Cleaner Production, 286, 124981. https://doi.org/10.1016/j.jclepro.2020.124981

  12. Farobie, O. & Hasanah, N. (2016). Artificial neural networkapproach to predict biodiesel production in supercriticaltert-butyl-methyl-ether. Indonesian Journal of Science &Tecnology, 1, 23-36. http://dx.doi.org/10.17509/ijost.v1i1

  13. Hajjari, M., Tabatabaei, M., Aghbashlo, M. & Ghanavati, H.(2017). A review on the prospects of sustainable biodieselproduction: A global scenario with an emphasis on wasteoilbiodiesel utilization. Renewable and SustainableEnergy Reviews, 72, 445–464. https://doi.org/10.1016/j.rser.2017.01.034

  14. Hangun-Balkir, Y. (2016). Green biodiesel synthesis usingwaste shells as sustainable catalysts with Camelina sativaoil. Journal of Chemistry, 2016, 1-10. http://dx.doi.org/10.1155/2016/6715232

  15. Ho, W. W. S., Ng, H. K. & Gan, S. (2016). Advances inultrasound-assisted transesterification for biodieselproduction. Applied Thermal Engineering, 100, 553–563.https://doi.org/10.1016/j.applthermaleng.2016.02.058

  16. Hupp, A. M., Perron, J., Roques, N., Crandall, J., Ramos,S. & Rohrback, B. (2018). Analysis of biodiesel-dieselblends using ultrafast gas chromatography (UFGC)and chemometric methods: Extending ASTM D7798to biodiesel. Fuel, 231(May), 264–270. https://doi.org/10.1016/j.fuel.2018.05.102

  17. Ilmi, M., Hommes, A., Winkelman, J. G. M., Hidayat, C. &Heeres, H. J. (2016). Kinetic studies on the transesterificationof sunflower oil with 1-butanol catalyzed by Rhizomucormiehei lipase in a biphasic aqueous-organic system.Biochemical Engineering Journal, 114, 110–118. https://doi.org/10.1016/j.bej.2016.06.026

  18. Ishak, M. A. M., Ismail, K., Nawawi, W. I., Jawad, A. H., Ani,A. Y. & Zakaria, Z. (2017). In-situ transesterification ofJatropha curcas L. seeds for biodiesel production usingsupercriticcal methanol. MATEC Web Conferences, 97,1-6, http://dx.doi.org/10.1051/matecconf/20179701082

  19. Jookjantra, K. & Wongwuttanasatian, T. (2017). Optimisationof biodiesel production fron refined palm oil withheterogeneous CaO catalyst using pulse ultrasonicwaves under vacuum condition. Energy Conversion andManagement, 154, 1-10. http://dx.doi.org/10.1016/j.enconman.2017.10.050

  20. Kalavathy, G. & Baskar, G. (2019). Synergism of clay withzinc oxide as nanocatalyst for production of biodiesel frommarine Ulva lactuca. Bioresource Tecnology, 281, 234-238.https://doi.org/10.1016/j.biortech.2019.02.101

  21. Khatibi, M., Khorasheh, F. & Larimi, A. (2021). Biodieselproduction via transesterification of canola oil in thepresence of Na–K doped CaO derived from calcinedeggshell. Renewable Energy, 163, 1626–1636. https://doi.org/10.1016/j.renene.2020.10.039

  22. Kumar, G., Singh, V. & Kumar, D. (2017a). Ultrasonic-assistedreactive-extraction is a fast and easy method for biodieselproduction from Jatropha curcas oilseeds, UltrasonicsSonochemistry, 37, 634-639. http://dx.doi.org/10.1016/j.ultsonch.2017.02.018

  23. Kumar, G., Singh, V. & Kumar, D. (2017b). Ultrasonic-assistedcontinuous methanolysis of Jatropha curcas oil in theappearance of biodiesel used as an intermediate solvent.Ultrasonics Sonochemistry, 39, 384-391. http://dx.doi.org/10.1016/j.ultsonch.2017.05.002

  24. Kumar, M. & Sharma, M. P. (2016). Selection of potentialoils for biodiesel production. Renewable and SustainableEnergy Reviews, 56, 1129–1138. https://doi.org/10.1016/j.rser.2015.12.032

  25. Likozar, B. & Levec, J. (2014). Transesterification of canola,palm, peanut, soybean and sunflower oil with methanol,ethanol, isopropanol, butanol and tert-butanol to biodiesel:Modelling of chemical equilibrium, reaction kineticsand mass transfer based on fatty acid composition.Applied Energy, 123, 108–120. https://doi.org/10.1016/j.apenergy.2014.02.046

  26. Liu, S., Wang, Z., Yu, S. & Xie, C. (2013). Transesterificationof waste oil to biodiesel using Brønsted acid ionic liquid ascatalyst. Bull. Chem. Soc. Ethiop., 27(2), 289-294. http://dx.doi.org/10.4314/bcse.v27i2.14

  27. López, L., Bocanegra, J. & Malagón Romero, D. (2015).Obtención de biodiésel por transesterificación de aceite decocina usado. Ingeniería y Universidad, 19(1), 155-172.10.11144/Javeriana.iyu19-1.sprq

  28. Lu, W., Alam, A., Liu, S., Xu, J. & Saldivar, R. P. (2020).Critical processes and variables in microalgae biomassproduction coupled with bioremediation of nutrients andCO2 from livestock farms: A review. Science of the TotalEnvironment, 716, 135247. https://doi.org/10.1016/j.scitotenv.2019.135247

  29. Macías Sánchez, M. D., Robles Medina, A., Hita Peña, E.,Jiménez Callejón, M. J., Estéban Cerdán, L., GonzálezMoreno, P. A. & Molina Grima, E. (2015). Biodieselproduction from wet microalgal biomass by directtransesterification. Fuel, 150, 14-20. http://dx.doi.org/10.1016/j.fuel.2015.01.106

  30. Malani, R. S., Shinde, V., Ayachit, S., Goyal, A. & Moholkar,V. S. (2018). Ultrasound–Assisted Biodiesel ProductionUsing Heterogeneous Base Catalyst and Mixed Non–edibleOils. Ultrasonics Sonochemistry, 52, 232-243. https://doi.org/10.1016/j.ultsonch.2018.11.021

  31. Mamo, T. T. & Mekonnen, Y. S. (2020). Microwave-assistedbiodiesel production from microalgae, Scenedesmusspecies, using goat bone–made nano-catalyst. AppliedBiochemistry and Biotechnology, 190 (4), 1147–1162.https://doi.org/10.1007/s12010-019-03149-0

  32. Maneerung, T., Kawi, S., Dai, Y. & Wang, C.-H. (2016).Sustainable biodiesel production via transesterification ofwaste cooking oil by using CaO catalysis prepared from chikenmanure. Energy Conversion and Magnagement, 123, 487-497. http://dx.doi.org/10.1016/j.enconman.2016.06.071

  33. Mani, Y., Devaraj, T., Devaraj, K., AbdurRawoof, S. A. &Subramanian, S. (2020). Experimental investigation ofbiodiesel production from Madhuca longifolia seed throughin situ transesterification and its kinetics and thermodynamicstudies. Environmental Science and Pollution Research,27 (29), 36450–36462. https://doi.org/10.1007/s11356-020-09626-y

  34. Mathimani, T., Uma, L. & Prabaharan, D. (2015). Homogeneousacid catalysed transesterification of marine microalgaChlorella sp. BDUG 91771 lipid - an eficient biodiesel yieldand its characterization. Renewable Energy, 81, 523-533.http://dx.doi.org/10.1016/j.renene.2015.03.059

  35. McCarthy, S. M., Melman, J. H., Reffell, O. K. & Gordon Wylie,S. W. (2020). Synthesis and partial characterization ofbiodiesel via base-catalyzed transesterification. Bioenergy(Second Edition). Elsevier. https://doi.org/10.1016/b978-0-12-815497-7.00024-5

  36. Medina Villadiego, M., Ospino Roa, Y. & Tejeda Benítez,L. (2015). Esterificación y Transesterificación de aceitesresiduales para obtener biodiésel. Luna Azul, 40, 25-34.10.17151/luaz.2015.40.3

  37. Mumtaz, M. W., Adnan, A., Mukhtar, H., Rashid, U. & Danish,M. (2017). Biodiesel production through chemical andbiochemical transesterification: Trends, technicalities,and future perspectives. Clean Energy for SustainableDevelopment: Comparisons and Contrasts of NewApproaches. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805423-9.00015-6

  38. Musa, I. A. (2016). The effects of alcohol to oil molar ratiosand the type of alcohol on biodiesel production usingtransesterification process. Egyptian journal of petroleum,25, 21-31. http://dx.doi.org/10.1016/j.ejpe.2015.06.007

  39. Navas, M. B., Lick, I. D., Bolla, P. A., Casella, M. L. & Ruggera,J. F. (2018). Transesterification of soybean and castor oil withmethanol and butanol using heterogeneous basic catalyststo obtain biodiesel. Chemical Engineering Science, 187,444–454. https://doi.org/10.1016/j.ces.2018.04.068

  40. Naveenkumar, R. & Baskar, G. (2021). Process optimization,green chemistry balance and technoeconomic analysis ofbiodiesel production from castor oil using heterogeneousnanocatalyst. Bioresource Technology, 320, 124347. https://doi.org/10.1016/j.biortech.2020.124347

  41. Ortiz Tapia, M. d.C., García Alamilla, P., Lagunes Gálvez,L.M., Arregoitia Quezada, M. I., García Alamilla, R. &León Chávez, M. A. (2016). Biodiesel production fromcrude palm oil (Elaeis guineensis Jacq). Ascending pathmethod application. Acta Universitaria, 26(5), 3-10.10.15174/au.2016.910

  42. Onukwuli, D. O., Emembolu, L. N., Ude, C. N., Aliozo, S. O. &Menkiti, M. C. (2017). Optimizarion of biodiesel productionfrom refined cotton seed oil and its characterization,Egytian Journal of Petroleum, 23, 103-110. http://dx.doi.org/10.1016/j.ejpe.2016.02.001

  43. Pasupulety, N., Gunda, K., Liu, Y., Rempel, G. L. & Ng,F.T.T. (2013). Production of biodiesel from soybean oilon CaO/Al2O3 solid base catalysts. Applied CatalysisA: General, 452, 189-202. http://dx.doi.org/10.1016/j.apcata.2012.10.006

  44. Pereira, F. M., Loures, C. C. A., Amaral, M. S., Gomes, F. M.,Pedro, G. A., Machado, M. A. G., Reis, C. E. R. & Silva, M.B. (2018). Evaluation of fatty acids production by Chlorellaminutissima in batch bubble-column photobioreactor. Fuel,230, 155–162. https://doi.org/10.1016/j.fuel.2018.04.170

  45. Polo Rodríguez, L., Fontalvo Gómez, M. & MendozaMeza, D. L. (2017). Producción de biodiésel mediantetransesterificación enzimática de aceite extraído de residuosde la industria de alimentos. Biodiesel Production byenzymatic transesterification of oil extracted from foodindustrial waste. Prospectiva, 16, 1, 26-33. http://dx.doi.org/10.15665/rp.v16i1.1164

  46. Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M. &Luque, R. (2018). A review on sustainable microalgae-basedbiofuel and bioenergy production: Recent developments.Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125

  47. Raj, J. V. A., Bharathiraja, B., Vijayakumar, B., Arokiyaraj,S., Iyyappan, J. & Praveen Kumar, R. (2019). Biodieselproduction from microalgae Nannochloropsis oculata usingheterogeneous Poly Ethylene Glycol (PEG) encapsulatedZnOMn2+ nanocatalyst, Bioresource Technology, 282,348-352. https://doi.org/10.1016/j.biortech.2019.03.030

  48. Singh, Kawarpal, Kumar, Sharoff Pon, Blümich, Bernhard(2019). Monitoring the mechanism and kinetics of atransesterification reaction for the biodiesel productionwith low field 1H NMR spectroscopy. Fuel, 243, 192-201.https://doi.org/10.1016/j.fuel.2019.01.084

  49. Sivaramakrishnan, R. & Incharoensakdi, A. (2017). Microalgaeas a feedstock for biodiesel production under ultrasoundtreatment-a review. Bioresourse Tecnology, 250, 877-887https://doi.org/10.1016/ j.biortech.2017.11.095

  50. Sivaramakrishnan, R. & Incharoensakdi, A. (2018). Utilizationof microalgae feedstock for concomitant production ofbioethanol and biodiesel. Fuel, 217, 458-466. https://doi.org/10.1016/j.fuel.2017.12.119

  51. Stokes, J., Tu, R., Peters, M., Yadav, G., Fabiano, L. A. &Seider, W. D. (2020). Omega-3 fatty acids from algaeproduced biodiesel. Algal Research, 51, 102047. https://doi.org/10.1016/j.algal.2020.102047

  52. Subsecretaría de Planeación y Transición Energética. (2019).Balance Nacional de Energía https://www.gob.mx/sener/documentos/balance-nacional-de-energia-2019

  53. Sumprasit, N., Wagle, N., Glanpracha, N. & Annachhatre, A.P. (2017). Biodiesel and biogas recovery from Spirulinaplatensis. International Biodeterioration & Biodegradation,119, 196-204. http://dx.doi.org/10.1016/j.ibiod.2016.11.006

  54. Tacias Pascacio, V. G., Rosales Quintero, A. & TorrestianaSánchez, B. (2016). Evaluación y caracterización degrasas y aceites residuales de cocina para la producciónde biodiésel: Un caso de estudio. Revista Internacionalde Contaminación Ambiental, 32(3), 303-313. 10.20937/RICA.2018.34.03.08

  55. Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M.,Bagheri, A., Zeinalabedini, M., Hadavand Mirzaei, H.,Mirzajanzadeh, M., Malekzadeh Shafaroudi, S. & Bakhtiari,S. (2013). Fatty acids profiling: A selective criterion forscreening microalgae strains for biodiesel production.Algal Res., 2(3), 258–267. https://doi.org/10.1016/j.algal.2013.04.003

  56. Tran, D.-T., Chang, J.-S. & Lee, D.-J. (2016). Recent insightsinto continuos -flow biodiesel production via catalyticand non-catalytic transesterification processes. AppliedEnergy, 185, 376-409. http://dx.doi.org/10.1016/j.apenergy.2016.11.006

  57. Wan Ghazali, W. N. M., Mamat, R., Masjuki, H. H. & Najafi,G. (2015). Effects of biodiesel from different feedstocks onengine performance and emissions: A review. Renewableand Sustainable Energy Reviews, 51, 585–602. https://doi.org/10.1016/j.rser.2015.06.031

  58. Xaaldi Kalhor, A., Mohammadi Nassab, A. D., Abedi, E.,Bahrami, A. & Movafeghi, A. (2016). Biodiesel productionin crude oil contaminated environment using Chlorellavulgaris. Bioresource Technology, 222, 190–194. https://doi.org/10.1016/j.biortech.2016.09.110

  59. Yasvanthrajan, N., Sivakumar, P., Muthukumar, K., Murugesan,T. & Arunagiri, A. (2020). Production of biodiesel fromwaste bio-oil through ultrasound assisted transesterificationusing immobilized lipase. Environmental Technologyand Innovation, 21, 101199. https://doi.org/10.1016/j.eti.2020.101199

  60. Zhang, L., Loh, K. C., Kuroki, A., Dai, Y. & Tong, Y. W. (2021).Microbial biodiesel production from industrial organicwastes by oleaginous microorganisms: Current status andprospects. Journal of Hazardous Materials, 402(July2020).https://doi.org/10.1016/j.jhazmat.2020.123543

  61. Živković, S. B., Veljkovića, M. V., Banković-Ilićb, I. B., Krstića,I. M., Konstantinovićb, S. S., Ilićb, S. B., Avramovićc,J. M., Stamenkovićb, O. S. & Veljkovićb, V. B. (2017).Technological, technical, economic, environmental, social,human health risk, toxicological and policy considerationsof biodiesel production and use. Renewable and SustainableEnergy Reviews, 79, 222-247

  62. Zorn, S. M. F. E., Pedro, G. A., Amaral, M. S., Loures, C. C. A.& Silva, M. B. (2017). Avaliação dos fatores envolvidos naextração de lipídios da biomassa da microalga Chlorellaminutissima, Via Solventes. Holos., 2, 66-78. https://doi.org/10.15628/holos.2017.5655




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25