medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

Revista Cubana de Informática Médica 2022; 14 (1)

Analysis of homogeneous textures for the volumetric estimation of brain matter by computed tomography

Mesa PAA, Hernández CKS, Montoya PA, Bolaños VS, Álvarez GED
Full text How to cite this article

Language: Spanish
References: 23
Page:
PDF size: 471.48 Kb.


Key words:

texture analysis, feature extraction, computed tomography, brain matter.

ABSTRACT

Texture analysis applications and their extraction of features are considered research trends in neuroscience. Texture as a method of image analysis has shown promising results in the detection of visible and non-visible lesions, and in computed tomography (CT) studies they are scarce. The present research aims to determine the applicability of the automatic processing of homogeneous texture indices in the volumetric estimation of brain gray matter in cranial CT images. For this, artificial images with predefined regions and the selection of CT images were used in patients with previous indications for CT of the skull. Two fundamental steps are taken for the implementation of this approach. As a result, an automatic windowless pattern recognition method was obtained by means of the extraction of homogeneous texture characteristics through the co-occurrence matrix.


REFERENCES

  1. Hernández Cortés K, Mesa Pujals AA, García Gómez O, Montoya Pedrón A. Morfología del envejecimiento cerebral: La morfometría como herramienta para la cuantificación de los cambios degenerativos cerebrales. En Morfovirtual 2020 [Internet]; 1-30 Noviembre de 2020; Cuba. Cuba: MINSAP; 2020 [citado 2021 Mar]. Disponible en: https://www.google.com/search?q=Morfolog%C3%ADa+del+envejecimiento+cerebral%3A+La+morfometr%C3%ADa+como+herramienta+para+la+cuantificaci%C3%B3n+de+los+cambios+degenerativos+cerebrales.+&ie=utf-8&oe=utf-8&client=firefox-b-ab

  2. De Leo JM, Schwartz M, Creasey H, Cutler N, Rapoport SI. Computer assisted categorization of brain computerized tomography pixels into cerebrospinal fluid, white matter, and gray matter. Computers and biomedical research [Internet]. 1985 [cited 2021 Mar];18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/3838273/

  3. Zhao L, Matloff W, Ning K, Kim H, Dinov ID, Toga AW. Age-related differences in brain morphology and the modifiers in middle-aged and older adults. Cerebral Cortex [Internet]. 2019 [cited 2021 Mar];29(10):4169-93. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931275/

  4. Fernández Viadero C, Verduga Vélez R, Crespo Santiago D. Deterioro Cognitivo Leve. Patrones de envejecimiento cerebral. Rev Esp Geriatr Gerontol [Internet]. 2017 [citado 13 Feb 2020];52(Supl 1):7-14. Disponible en: https://www.elsevier.es/es-revista-revista-espanola-geriatria-gerontologia-124-pdf-S0211139X18300738

  5. Kassner A and Thornhill RE. Texture analysis: A review of neurologic MR imaging applications. American Journal of Neuroradiology [Internet]. 2010 [cited 2021 Feb 13];31:809–16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964174/

  6. Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol [Internet]. 2004 [cited 2021 Feb 13];59:1061–9. Available from: http://facweb.cdm.depaul.edu/research/vc/medix/2011/papers/reuweek5.pdf

  7. Kollem S, Reddy KR, Rao DS. A review of image denoising and segmentation methods based on medical images. International Journal of Machine Learning and Computing [Internet]. 2019 Jun [cited 2021 Mar];9(3):288-95. Available from: http://www.ijmlc.org/vol9/800-L0252.pdf

  8. Sakib S, Siddique M, Bakr A. Unsupervised Segmentation Algorithms' Implementation in ITK for Tissue Classification via Human Head MRI Scans. ArXiv e-Journal [Internet]. 2019 [cited 2021 Mar]:[about 4 p.] Available from: https://arxiv.org/ftp/arxiv/papers/1902/1902.11131.pdf

  9. Irimia A. Cross-Sectional Volumes and Trajectories of the Human Brain, Gray Matter, White Matter and Cerebrospinal Fluid in 9473 Typically Aging Adults. Neuroinformatics [Internet]. 2021 [cited 2021 Mar];19. Available from: https://link.springer.com/article/10.1007/s12021-020-09480-w

  10. Alharan AF, FatlawiHK, Ali NS. A cluster-based feature selection method for image texture classification. Indonesian Journal of Electrical Engineering and Computer Science [Internet]. 2019 Jun [cited 2021 Mar];14(3):1433-42. Available from: http://ijeecs.iaescore.com/index.php/IJEECS/article/download/16643/12225

  11. Heurtier A. Texture feature extraction methods: A survey. IEEE Access [Internet]. 2019 [cited 2021 Mar];7:8975-9000. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8600329

  12. Sudheesh KV, Basavaraj L. Impact of Statistical Texture Feature Abstraction Based Classification Applied for Detection of Abnormalities in Brain CT Images. International Journal of Pure and Applied Mathematics [Internet]. 2018 [cited 2021 Mar];118(18):2645-54. Available from: https://acadpubl.eu/jsi/2018-118-18/articles/18c/42.pdf

  13. Farokhian F, Yang CH, Beheshti I, Matsuda H, Wu S. Age-Related Gray and White Matter Changes in normal adult Brains. Aging and Disease [Internet]. 2017 Dec [cited 2019 Ene 10];8(6):899-909. Available from: http://www.aginganddisease.org/EN/10.14336/AD.2017.0502

  14. Delgado Vergara T, Pereira Pérez J. Retos del derecho ante el envejecimiento poblacional en Cuba. Anales de la Academia de Ciencias de Cuba [Internet]. 2019 [citado 18 Feb 2021];9(3):182-4. Disponible en: http://revistaccuba.sld.cu/index.php/revacc/article/view/695/713

  15. Hagenauer MH, Schulmann A, Li JZ, Vawter MP, Walsh DM, Thompson RC, et al. Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PloS One [Internet]. 2018 [cited 2021 Mar];13(7):[about 31 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6049916/

  16. Nissim NR, O’Shea AM, Bryant V, Porges EC, Cohen R, Woods AJ. Frontal structural neural correlates of working memory performance in older adults. Front Aging Neurosci [Internet]. 2017 [cited 2021 Mar];8:[about 9 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210770/

  17. Haralick RM, Shapiro LG. Image segmentation techniques. Computer vision, graphics, and image processing [Internet]. 1985 [cited 2021 Mar];29(1):100-32. Available from: https://haralick.org/journals/image_segmentation.pdf

  18. Ruttimann UE, Joyce EM, Rio DE, Eckardt MJ. Fully automated segmentation of cerebrospinal fluid in computed tomography. Psychiatry Research: Neuroimaging [Internet]. 1993 [cited 2021 Mar];50(2). Available from: https://www.semanticscholar.org/paper/Fully-automated-segmentationofcerebrospinalfluidRuttimannJoyce/e4dd84856d2f15220b8241d84a247d9999bf9438

  19. Daudt RC, Le Saux B, Boulch A, Gousseau Y. Guided anisotropic diffusion and iterative learning for weakly supervised change detection. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) [Internet]; 2019 June 16-17; Long Beach, CA, USA. 2020 Apr [cited 2021 Feb]. USA: IEEE. Available from: https://ieeexplore.ieee.org/abstract/document/9025678

  20. Soltanian Zadeh H, Windham JP. A multiresolution approach for contour extraction from brain images. Medical Physics [Internet]. 1997 Dec [cited 2021 Mar];24(12). Available from: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.598099

  21. Gupta V, Ambrosius W, Qian G, Blazejewska A, Kazmierski R, Urbanik A, et al. Automatic segmentation of cerebrospinal fluid, white and gray matter in unenhanced computed tomography images. Acad Radio [Internet]. 2010 [cited 2021 Mar];17(11). Available from: https://pubmed.ncbi.nlm.nih.gov/20634108/

  22. Kemmling A, Wersching H, Berger K, Knecht S, Groden C, Nölte I. Decomposing the hounsfield unit. Clin Neuroradiol [Internet]. 2012 [cited 2021 Mar];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/22270832/

  23. Manniesing R, Oei MT, Oostveen LJ, Melendez J, Smit EJ, Platel B, et al. White matter and gray matter segmentation in 4D computed tomography. Scientific Reports [Internet]. 2017 [cited 2021 Mar];7(1):[about 11 p.]. Available from: https://doi.org/10.1038/s41598-017-00239-z




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2022;14