medigraphic.com
SPANISH

Revista Cubana de Informática Médica

ISSN 1684-1859 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

Revista Cubana de Informática Médica 2022; 14 (1)

Deep Learning Applied in Photoacoustic Images for the Identification of Breast Cancer

Ruíz E, Domínguez JE
Full text How to cite this article

Language: Spanish
References: 44
Page:
PDF size: 510.85 Kb.


Key words:

photoacoustic images, photoacoustic tomography, deep learning, machine learning, breast cancer, image reconstruction.

ABSTRACT

Photoacoustic Imaging (PAI) is a hybrid imaging modality that combines optical illumination and ultrasound detection. Because pure optical imaging methods cannot maintain high resolution, the ability to achieve high resolution optical contrast images in biological tissues makes Photoacoustic (PA) a promising technique for various clinical imaging applications. At present, Deep Learning has the most recent approach of methods based on PAI where there are a large number of applications in image analysis especially in the area of the biomedical field, such as acquisition, segmentation and reconstructions of computed tomography imaging. This review describes the latest research in PAI and an analysis of the techniques and methods based on Deep Learning applied in different modalities for the diagnosis of breast cancer.


REFERENCES

  1. Fitzmaurice C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 2006 to 2016: A systematic analysis for the Global Burden of Disease study. Journal of Clinical Oncology [Internet]. 2018 [cited 2021 Dec 6];36(15_suppl):1568. Available from: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.1568

  2. Fernández TÁ, Reigosa YA. Cáncer de mama hereditario. Salud comunidad [Internet]. 2016 Jun [citado 2021 6 Dic 2021];14(1):52–60. Disponible en: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-32932016000100008

  3. Isacaz N. Cambios genéticos y factores de riesgo del cáncer [Internet]. Elsevier; 2018 [citado 19 Dic 2021]. Disponible en: https://www.elsevier.com/es-es/connect/medicina/cancer-cambios-geneticos-factores-riesgo

  4. American Cancer Society [Internet]. Atlanta, Georgia, EU: Sociedad Americana Contra El Cáncer; c2019 [cited 2021 Dec 6]. Recomendaciones de la Sociedad Americana Contra El Cáncer para la detección temprana del cáncer de seno. Available from: https://www.cancer.org/es/cancer/cancer-de-seno/pruebas-de-deteccion-y-deteccion-temprana-del-cancer-de-eno/guias-de-la-sociedad-americana-contra-el-cancer-para-la-deteccion-temprana-del-cancer-de-seno.html

  5. Czuchnowski J, Prevedel R. Photoacoustics: seeing with sound. An advanced technology that combines high-frequency sound waves with laser light is giving researchers and clinicians a new way of seeing living tissue. Science in School [Internet]. 2019 Summer [cited 2021 Dec 6]. Available from: https://www.prevedel.embl.de/files/issue47_photoacoustics.pdf

  6. Breathnach AE. Photoacoustic imaging with clinical, preclinical, and quantitative applications [Doctoral theses in Internet]. Galway, Ireland: National University of Ireland; 2020 Mar [cited 2021 Dec 7]. 171 p. Available from: https://aran.library.nuigalway.ie/bitstream/handle/10379/16611/Aed%c3%a1n%20Breathnach%20PhD%20Thesis.pdf?sequence=5&isAllowed=y

  7. Wang L, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods [Internet]. 2016 [cited 2021 Dec 14];13(8). Available from: https://pubmed.ncbi.nlm.nih.gov/27467726/

  8. Liu M. Photoacoustic imaging and its preclinical application in ophthalmology. Acta Ophthalmologica [Internet]. 2017 Sep [cited 2021 Dec 6];95. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-3768.2017.03665

  9. Hauptmann A, Cox B. Deep learning in photoacoustic tomography: current approaches and future directions. Journal of Biomedical Optics [Internet]. 2020 [cited 2021 Dec 6];25(11). Available from: https://www.researchgate.net/publication/344276721_Deep_Learning_in_Photoacoustic_Tomography_Current_approaches_and_future_directions

  10. Kang E, Min J, Ye J. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Medical Physics [Internet]. 2017 [cited 2021 Dec 6];44(10):e360-75. Available from: https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.12344

  11. Ruthotto L, Haber E. Deep Neural Networks Motivated by Partial Differential Equations. Journal of Mathematical Imaging and Vision [Internet]. 2019 [cited 2021 Dec 7];62(3). Available from: https://link.springer.com/article/10.1007/s10851-019-00903-1

  12. Guan S, Khan A, Sikdar S, Chitnis P. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning. Scientific Reports [Internet]. 2020 [cited 2021 Dec 7];10(1). Available from: https://arxiv.org/ftp/arxiv/papers/1911/1911.04357.pdf

  13. Montangie L, Sanz VM, Illanes LH. Imágenes en Medicina Nuclear: Verificación de su validez en la práctica cotidiana [Internet]. Argentina: Editorial de la Universidad Nacional de La Plata (EDULP); 2019 [citado 7 Dec

  14. Valencia Pérez, TA. Implementación de algoritmos de reconstrucción tomográfica mediante programación paralela (CUDA) [tesis doctoral en Internet]; 2020 [citado 7 Dic 2021]. 62 p. Disponible en: https://repositorioinstitucional.buap.mx/handle/20.500.12371/10186

  15. Bhatt M, Gutta S, Yalavarthy P. Exponential filtering of singular values improves photoacoustic image reconstruction. J Opt Soc Am [Internet]. 2016 [cited 2021 Dec 7];33(9). Available from: https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-33-9-1785

  16. Javaherian A, Holman S. A Multi-Grid Iterative Method for Photoacoustic Tomography. IEEE Transactions on Medical Imaging [Internet]. 2017 [cited 2021 Dec 8];36(3):696-706. Available from: https://arxiv.org/pdf/1603.02329.pdf

  17. Wang J, Zhang C, Wang Y. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity. BioMed Eng OnLine [Internet]. 2017 [cited 2021 Dec 8];16(1):[about 30 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450113/

  18. Ren K, Vallélian S. Characterizing Impacts of Model Uncertainties in Quantitative Photoacoustics. SIAM/ASA Journal on Uncertainty Quantification [Internet]. 2020 [cited 2021 Dec 8];8(2):636-67. Available from: https://arxiv.org/pdf/1812.02876.pdf

  19. Muramatsu S, Sato K. Quantitative Analysis of Emphysema in Ultra-high-resolution CT by Using Deep Learning Reconstruction: Comparison with Hybrid Iterative Reconstruction. Japanese Journal of Radiological Technology [Internet]. 2020 [cited 2021 Dec 8];76(11):1163-72. Available from: https://www.jstage.jst.go.jp/article/jjrt/76/11/76_2020_JSRT_76.11.1163/_pdf/-char/ja

  20. Valdez Rodríguez J, Calvo H, Felipe Riverón E. Reconstrucción de profundidad a partir de una sola imagen con perspectiva mediante redes neuronales completamente convolucionales. Research in Computing Science [Internet]. 2017 [cited 2021 Dec 9];137(1):29-38. Available from: https://www.rcs.cic.ipn.mx/2017_137/Reconstruccion%20de%20profundidad%20a%20partir%20de%20una%20sola%20imagen%20con%20perspectiva%20mediante%20redes.pdf

  21. Shahid H, Khalid A, Liu X, Irfan M, Ta D. A Deep Learning Approach for the Photoacoustic Tomography Recovery From Undersampled Measurements. Front Neurosci [Internet]. 2021 [cited 2021 Dec 9];15:[about 13 p.]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943731/

  22. Yang C, Lan H, Gao F, Gao F. Review of deep learning for photoacoustic imaging. Photoacoustics [Internet]. 2021 [cited 2021 Dec 9];21:[about 13 p.]. Available from: https://www.sciencedirect.com/science/article/pii/S2213597920300550

  23. Hernández Hernández S. Segmentación de masas en imágenes de mamografía mediante agrupamiento restringido. México: REPOSITORIO NACIONAL CONACYT; 2018 [citado 8 Dic 2021]. Disponible en: http://repositorio.utm.mx/handle/123456789/124?mode=full

  24. Ramírez WA, Arámburo J, Freire FR. Procesamiento Automático de Imágenes Digitales Mamográficas DICOM [tesis doctoral]. México: Universidad de Guadalajara; 2020 [citado 14 Dec 2021]. 143 p. Disponible en: https://riudg.udg.mx/bitstream/20.500.12104/82246/1/DCUCEA10043FT.pdf

  25. Padial J. Técnicas de programación "deep learning": ¿simulacro o realización artificial de la inteligencia? Naturaleza y Libertad (Revista de estudios interdisciplinares) [Internet]. 2019 [citado 9 Dic 2021];(12):191-210. Disponible en: https://revistas.uma.es/index.php/naturaleza-y-libertad/article/view/6274/5798

  26. Robles Fajardo JB, Millán Gómez JA. Modelo en Machine Learning para el Diagnóstico del Cáncer de Mama [proyecto de investigación para el grado de especialista en Internet]. Colombia: Universidad Distrital Francisco José de Caldas; 2020 [citado 14 Dic 2021]. 168 p. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/25070/RoblesFajardoJaimeBrandon2020.pdf?sequence=1&isAllowed=y

  27. Durán López L, Domínguez Morales JP, Luna Perejón F, Rodríguez IA, Civit Masot J, Díaz SV, et al. Clasificación de tumores en cáncer de mama basado en redes neuronales de convolución. En: Beltán Custodio AM, Ángel MF (ed.). Avances en la investigación en ciencia e ingeniería [Internet]. 3ciencias. España: Editorial Área de Innovación y Desarrollo, S.L.; 2019 [citado 16 Dic]. p. 87–94. Disponible en: https://dialnet.unirioja.es/descarga/libro/741305.pdf

  28. Zhang J, Chen B, Zhou M, Lan H, Gao F. Photoacoustic Image Classification and Segmentation of Breast Cancer: A Feasibility Study. IEEE Access [Internet]. 2019 [cited 2021 Dec 16];7:5457-66. Available from: https://ieeexplore.ieee.org/document/8586863

  29. Ayana G, Dese K, Choe S. Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging. Cancers [Internet]. 2021 [cited 2021 Dec 16];13(4):[about 15 p.]. Available from: https://mdpi-res.com/d_attachment/cancers/cancers-13-00738/article_deploy/cancers-13-00738-v2.pdf?version=1613977937

  30. Khamparia A, Bharati S, Podder P, Gupta D, Khanna A, Phung T et al. Diagnosis of breast cancer based on modern mammography using hybrid transfer learning. Multidimensional Systems and Signal Processing [Internet]. 2021 [cited 2021 Dec 16];32(2):747-65. Available from: https://link.springer.com/content/pdf/10.1007/s11045-020-00756-7.pdf

  31. Zhang G, Xu H. Deep Metric Learning Based Histopathological Image Classification. J Phys Conf Ser [Internet]. 2020 [cited 2021 Dec 16];1621:[about 8 p.]. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1621/1/012055/pdf

  32. Goodfellow I, Bengio Y, Courville A. Deep Learning. London, England: MIT Press; 2016 [cited 2021 Dec 16]. Available from: https://www.deeplearningbook.org/

  33. Kirchner T, Gröhl J, Maier-Hein L. Context encoding enables machine learning-based quantitative photoacoustics. J Biomed Opt. 2018 [cited 2021 Dec 17];23(5):[about 9 p.]. Available from: https://pubmed.ncbi.nlm.nih.gov/29777580/

  34. Cai C, Deng K, Ma C, Luo J. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt Letter. 2018 [cited 2021 Dec 17];43(12). Available from: https://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-12-2752

  35. Mi Diario Python - Blog Dedicado Al Lenguaje De Programación Python [Internet]. 2021 [citado 8 Dic 2021]. Disponible en: http://www.pythondiario.com/2018/01/introduccion-al-machinelearning8.html

  36. Ávila Hernández R, Rossell Mendoza KR, Soto Mora JA. Choosing a machine learning model for breast cancer detection in images. Revista latinoamericana de Investigación Social [Internet]. 2020 [citado 17 Dic 2021];3(3):19-35. Available from: https://repositorio.lasalle.mx/bitstream/handle/lasalle/2065/Choosing%20a%20machine%20learning%20model%20for%20breast%20cancer%20detection%20in%20images.pdf?sequence=1&isAllowed=y

  37. Navarro Jurado S. Uso de algoritmos de aprendizaje automático aplicados a base de datos genéticas. España: Universitat Oberta Catalunya; 2017 [citado 18 Dec 2021]. 77 p. Disponible en: https://www.researchgate.net/publication/318393732_Uso_de_algoritmos_de_aprendizaje_automatico_aplicados_a_bases_de_datos_geneticos

  38. González Vilanova A. Métodos de machine learning en estudios biomédicos. España: UPV - Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural ETSIAMN; 2019 [citado 18 Dic 2021]. Disponible en: https://m.riunet.upv.es/handle/10251/127574

  39. Athreya A, Kalari K, Cairns J, Gaglio A, Wills Q, Niu N et al. Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer. Oncotarget [Internet]. 2017 [cited 2021 Dec 18];8(16):27199-215. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432329/

  40. Gal J, Bailleux C, Chardin D, Pourcher T, Gilhodes J, Jing L, et al. Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer. Computational and Structural Biotechnology Journal [Internet]. 2020 [cited 2021 Jul 29];18:1509-24. Available from: https://doi.org/10.1016/j.csbj.2020.05.021

  41. Godefroy G, Arnal B, Bossy E. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties. Photoacoustics [Internet]. 2021 Mar [cited 2021 Dec 18];21:[about 8 p.]. Available from: https://doi.org/10.1016/j.pacs.2020.100218

  42. Adler J, Öktem O. Deep posterior sampling: uncertainty quantification for large scale inverse problems. Int Conf Med Imaging Deep Learn [Internet]. 2019 [cited 2021 Dec 19]. Available from: https://openreview.net/pdf?id=S1lXEH_E9N

  43. Etmann C, Ke R, Schönlieb CB. iUNets: learnable invertible up- and downsampling for large-scale inverse problems [Internet]. 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP); 2020 Sep 21-24; Espoo, Finland. USA: IEEE; 2020 [cited 2021 Dec 19]. Available from: https://ieeexplore.ieee.org/document/9231874

  44. Hsu KT, Guan S, Chitnis PV. Comparing deep learning frameworks for photoacoustic tomography image reconstruction. Photoacoustics [Internet]. 2021 [cited 2021 Dec 19];23:[about 15 p.]. Available from: https://www.sciencedirect.com/science/article/pii/S221359792100032X




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Informática Médica. 2022;14