medigraphic.com
SPANISH

Revista Cubana de Medicina Militar

ISSN 1561-3046 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

Rev Cub Med Mil 2022; 51 (1)

Polymorphisms in genetic material damage repair genes and lung cancer

Reyes RE, Rodeiro GI, Alfredo HJ, Cuétara LE
Full text How to cite this article

Language: Spanish
References: 35
Page:
PDF size: 236.88 Kb.


Key words:

lung cancer, polymorphisms, repair genes, genetic susceptibility.

ABSTRACT

Introduction: Lung cancer is one of the main health problems in Cuba and worldwide. Genetic differences due to single nucleotide polymorphisms are important factors involved in the genetic susceptibility to this disease. In Cuba, there are scarce data available on single nucleotide polymorphisms and their possible influence on the incidence and prognosis of cancer.
Objective: To expose the importance of the study of single nucleotide polymorphisms in DNA damage repair genes in lung cancer.
Results: Smoking is the main risk factor for developing lung cancer, however, approximately 15 % of smokers will develop the disease. Single nucleotide polymorphisms are important factors involved in genetic predisposition to diseases. The presence of polymorphic variants can modify the efficacy of repair systems, favoring the occurrence of genotoxicity and/or mutagenesis. They can also modify the response to oncological treatments and patient´s survival. Therefore, in addition to being susceptibility markers, polymorphisms are considered individual prognostic markers of response to therapy. This work emphasizes the usefulness of evaluating single nucleotide polymorphisms as clinical and susceptibility biomarkers in the Cuban population.
Conclusions. The study of single nucleotide polymorphisms will allow a personalized approach to oncological diseases, which could contribute to define groups of individuals at high risk of getting lung cancer, therefore, early disease detection.


REFERENCES

  1. Lamas RP, Lorenzo TD, Rivera LR. III Encuesta nacional de factores de riesgo y actividades preventivas de enfermedades no trasmisibles. Cuba 2010-2011. 2014 [acceso: 31/03/2021];1:1-330. Disponible en: Disponible en: http://www.bvs.sld.cu/libros/encuesta_nacional_riesgo/indice_p.htm

  2. Landrove-Rodríguez O, Morejón-Giraldoni A, Venero-Fernández S, Suárez-Medina R, Almaguer-López M, Pallarols-Mariño E, et al. Enfermedades no transmisibles: factores de riesgo y acciones para su prevención y control en Cuba. Revista Panamericana de Salud Pública. 2018 [acceso: 20/01/2021];42:e23. Disponible en: Disponible en: https://doi.org/10.26633/RPSP.2018.23

  3. Balkan E, Bilici M, Gundogdu B, Aksungur N, Kara A, Yasar E, et al. ERCC2 Lys751Gln rs13181 and XRCC2 Arg188His rs3218536 gene polymorphisms contribute to susceptibility of colon, gastric, liver, lung and prostate cancer. Journal Of Buon. 2020 [acceso: 02/03/2021];25(1):574-81. Disponible en: Disponible en: https://pubmed.ncbi.nlm.nih.gov/32277685/

  4. Ma J, Setton J, Lee NY, Riaz N, Powell SN. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nature communications. 2018 [acceso: 14/09/2020];9(1):1-12. Disponible en: Disponible en: https://doi.org/10.1038/s41467-018-05228-y

  5. Céspedes-Garro C, Naranjo M-EG, Rodrigues-Soares F, LLerena A, Duconge J, Montane-Jaime LK, et al. Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics. 2016 [acceso: 22/11/2020];17(15):1707-24. DOI: 10.2217/pgs-2016-0053

  6. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021 [acceso: 20/03/2021]. DOI: 10.3322/caac.21660

  7. Ryan BM. Lung cancer health disparities. Carcinogenesis. 2018 [acceso: 28/08/2020];39(6):741-51. DOI: 10.1093/carcin/bgy047

  8. Murphy SE, Park SL, Balbo S, Haiman CA, Hatsukami DK, Patel Y, et al. Tobacco biomarkers and genetic/epigenetic analysis to investigate ethnic/racial differences in lung cancer risk among smokers. NPJ precision oncology. 2018 [acceso: 24/10/2020];2(1):1-10. DOI: 10.1038/s41698-018-0057-y

  9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018 [acceso: 13/12/2020];68(6):394-424. DOI: 10.3322/caac.21492

  10. Bade BC, Cruz CSD. Lung cancer 2020: epidemiology, etiology, and prevention. Clinics in Chest Medicine. 2020 [acceso: 16/02/2021];41(1):1-24. DOI: 10.1016/j.ccm.2019.10.001

  11. Brenner DR, Fehringer G, Zhang Z-F, Lee Y-CA, Meyers T, Matsuo K, et al. Alcohol consumption and lung cancer risk: A pooled analysis from the International Lung Cancer Consortium and the SYNERGY study. Cancer epidemiology. 2019 [acceso: 11/12/2020];58:25-32. DOI: 10.1016/j.canep.2018.10.006

  12. Schwartz AG, Cote ML. Epidemiology of Lung Cancer. In: Ahmad A, Gadgeel S, editors. Lung Cancer and Personalized Medicine: Current Knowledge and Therapies. Cham: Springer International Publishing; 2016 [acceso: 20/02/2021]; p. 21-41. Disponible en: Disponible en: https://link.springer.com/book/10.1007/978-3-319-24223-1#reviews

  13. ACS. Cancer Facts & Figures 2020. American Cancer Society. Atlanta. 2020. [acceso: 10/01/2021]. Disponible en: Disponible en: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2020.html

  14. Ramírez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, et al. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends in cancer. 2020 [acceso: 20/01/2021];6(2):86-97. DOI: 10.1016/j.trecan.2019.12.007

  15. Horn L, Lovly CM, Johnson DH. Neoplasms of the Lung. En: Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J, editors. Harrison's Principles of Internal Medicine. Oncology and Hematology. 1. 19th ed. United States of America: McGraw-Hill; 2015 [acceso: 15/03/2021]. p. 506-23. Disponible en: Disponible en: https://accessmedicine.mhmedical.com/content.aspx?bookid=1130§ionid=79720773

  16. Arrieta O, Cardona AF, Martín C, Más-López L, Corrales-Rodríguez L, Bramuglia G, et al. Updated frequency of EGFR and KRAS mutations in nonsmall-cell lung cancer in Latin America: the Latin-American Consortium for the Investigation of Lung Cancer (CLICaP). Journal of Thoracic Oncology. 2015 [acceso: 16/03/2021];10(5):838-43. DOI: 10.1097/JTO.0000000000000481

  17. PICC. Guía de cáncer de pulmón. Acciones para su control. Programa Integral para el Control del Cáncer en Cuba. La Habana: Minsap; 2016. [acceso: 12/12/2020]. Disponible en: Disponible en: https://www.iccp-portal.org/system/files/plans/CUB_B5_CUB_Estrategia_cancer.pdf

  18. Gomperts BN, Spira A, Massion PP, Walser TC, Wistuba II, Minna JD, et al., editors. Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med. 2011 [acceso: 18/10/2020];32(1):032-043. DOI: 10.1055/s-0031-1272867

  19. Samet JM. Carcinogenesis and lung cancer: 70 years of progress and more to come. Carcinogenesis. 2020 [acceso: 16/03/2021];41(10):1309-17. Disponible en: Disponible en: https://doi.org/10.1093/carcin/bgaa094

  20. Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Frontiers in genetics. 2018 [acceso: 18/01/2021];9:507. Disponible en: Disponible en: https://doi.org/10.3389/fgene.2018.00507

  21. Jameson JL, Kopp P. Principles of Human Genetics. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J, editors. Harrison's Principles of Internal Medicine. Oncology and Hematology. 1. 19th ed. United States of America: McGraw-Hill; 2015. [acceso: 18/03/2021]; p. 425-44. Disponible en: Disponible en: https://accessmedicine.mhmedical.com/content.aspx?bookid=1130§ionid=79720773

  22. Horn L, Araujo LHdL, Nana-Sinkam P, Otterson GA, Williams TM, Carbone DP. Molecular Biology of Lung Cancer. In: DeVita VT, Lawrence TS, Rosenberg SA, editors. Cancer: Principles & Practice of Oncology. 10th ed. United States of America: Wolters Kluwer Health; 2015. [acceso: 02/03/2021]; p. 482-94. Disponible en: Disponible en: https://www.wagecommunication.com/devita/p1.pdf

  23. Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Annals of global health. 2019 [acceso: 04/02/2021];85(1):8. DOI: 10.5334/aogh.2419

  24. Flores-Alfaro E, Burguete-García AI, Salazar-Martínez E. Diseños de investigación en epidemiología genética. Revista panamericana de salud pública. 2012 [acceso: 05/02/2021];31:88-94. Disponible en: Disponible en: http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S1020-49892012000100013

  25. Stadler J, Richly H. Regulation of DNA repair mechanisms: how the chromatin environment regulates the DNA damage response. International journal of molecular sciences. 2017 [acceso: 15/01/2021];18(8):1715. DOI: 10.3390/ijms18081715

  26. Coelho A, Nogueira A, Soares S, Assis J, Pereira D, Bravo I, et al. TP53 Arg72Pro polymorphism is associated with increased overall survival but not response to therapy in Portuguese/ Caucasian patients with advanced cervical cancer. Oncology Letters. 2018 [acceso: 11/10/2020];15(5):8165-71. DOI: 10.3892/ol.2018.8354

  27. Brandt-Rauf PW, Li Y, Long C, Monaco R. The molecular epidemiology of DNA repair polymorphisms in carcinogenesis. En: Chen C, editor. New Research Directions in DNA Repair. London: IntechOpen; 2013. [acceso: 11/11/2020]. Disponible en: Disponible en: https://www.intechopen.com/books/new-research-directions-in-dna-repair/the-molecular-epidemiology-of-dna-repair-polymorphisms-in-carcinogenesis

  28. Barnoud T, Parris JL, Murphy ME. Common genetic variants in the TP53 pathway and their impact on cancer. Journal of molecular cell biology. 2019 [acceso: 01/11/2020];11(7):578-85. DOI: 10.1093/jmcb/mjz052

  29. Du L, Wang H, Xiong T, Ma Y, Yang J, Huang J, et al. The polymorphisms in the MGMT gene and the risk of cancer: a meta-analysis. Tumor Biology. 2013 [acceso: 07/10/2020];34(5):3227-37. DOI: 10.1007/s13277-013-0893-x

  30. Eiholzer RA, Mehta S, Kazantseva M, Drummond CJ, McKinney C, Young K, et al. Intronic TP53 Polymorphisms Are Associated with Increased Δ133TP53 Transcript, Immune Infiltration and Cancer Risk. Cancers. 2020 [acceso: 18/12/2020];12(9):2472. Disponible en: Disponible en: https://doi.org/10.3390/cancers12092472

  31. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and molecular mutagenesis. 2017 [acceso: 11/01/2021];58(5):235-63. Disponible en: Disponible en: https://doi.org/10.1002/em.22087

  32. Zhang H, Li Y, Guo S, Wang Y, Wang H, Lu D, et al. Effect of ERCC2 rs13181 and rs1799793 polymorphisms and environmental factors on the prognosis of patients with lung cancer. American Journal of Translational Research. 2020 [acceso: 12/03/2021];12(10):6941. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653631/

  33. Köberle B, Koch B, Fischer BM, Hartwig A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Archives of toxicology. 2016 [acceso: 19/11/2020];90(10):2369-88. Disponible en: Disponible en: https://doi.org/10.1007/s00204-016-1771-2

  34. Evers B, Helleday T, Jonkers J. Targeting homologous recombination repair defects in cancer. Trends in pharmacological sciences. 2013 [acceso: 28/01/2021];31(8):372-80. DOI: 10.1016/j.tips.2010.06.001

  35. Dashti S, Taherian-Esfahani Z, Keshtkar A, Ghafouri-Fard S. Associations between XRCC3 Thr241Met polymorphisms and breast cancer risk: systematic-review and meta-analysis of 55 case-control studies. BMC medical genetics. 2019 [acceso: 25/03/2021];20(1):79. Disponible en: Disponible en: https://doi.org/10.1186/s12881-019-0809-8




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cub Med Mil . 2022;51