medigraphic.com
SPANISH

Acta Médica Grupo Angeles

Órgano Oficial del Hospital Angeles Health System
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
    • Names and affiliations of the Editorial Board
  • Policies
  • About us
    • Data sharing policy
    • Stated aims and scope
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 1

<< Back Next >>

Acta Med 2024; 22 (1)

Bioelectrical impedance as a useful tool for the diagnosis of metabolic syndrome in Mexico: a narrative review

Taracena PS, Díaz GEJ, Benítez BLF, Arias SPY
Full text How to cite this article 10.35366/114593

DOI

DOI: 10.35366/114593
URL: https://dx.doi.org/10.35366/114593

Language: Spanish
References: 18
Page: 44-47
PDF size: 132.90 Kb.


Key words:

metabolic syndrome, bioelectrical impedance, cardiovascular disease, body fat, anthropometry.

ABSTRACT

Introduction: metabolic syndrome is essential in incidence and prevention of cardiovascular disease. Detection is limited and the usual tools require invasive and serological methods for classification. Objective: to describe the importance and essential aspects of bioelectrical impedance as a practical tool for the detection of metabolic syndrome. Material and methods: a narrative review was carried out selecting articles that met the following criteria: Age less than 10 years, publications in English and Spanish with the following terms: "bioelectrical impedance", "metabolic syndrome", "metabolic syndrome" and "bioelectric impedance". The following search engines were used: Google Academic and PubMed. Results: twenty articles were reviewed including narrative reviews, systematic reviews, and clinical trials. Several studies demonstrated the usefulness of bioelectric impedance as a screening tool, per quartile increase in muscle mass decreases the likelihood of metabolic syndrome by 25% and the usefulness of fat-to-muscle ratio by bioimpedance as an early detection tool. Conclusions: bioimpedance for the detection of patients with metabolic syndrome is still under study. This tool has been used in other pathologies with promising results. Current evidence suggests that this method should be considered for future decision making.


REFERENCES

  1. Ouyang F, Cheng X, Zhou W, He J, Xiao S. Increased mortality trends in patients with chronic non-communicable diseases and comorbid hypertension in the United States, 2000-2019. Front Public Health [Internet]. 2022; 10: 753861. Available in: http://dx.doi.org/10.3389/fpubh.2022.753861

  2. Torres Zapata AE. El obeso de peso normal. RESPYN Revista de Salud Pública y Nutrición [Internet]. 2018; 17 (2): 24-31. Disponible en: http://dx.doi.org/10.29105/respyn17.2-4

  3. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis [Internet]. 2017; 11 (8): 215-225. Available in: http://dx.doi.org/10.1177/1753944717711379

  4. Gutiérrez-Solis AL, Datta Banik S, Méndez-González RM. Prevalence of metabolic syndrome in Mexico: A systematic review and meta-analysis. Metab Syndr Relat Disord [Internet]. 2018; 16 (8): 395-405. Available in: http://dx.doi.org/10.1089/met.2017.0157

  5. Romero-Martínez M, Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O, Mojica-Cuevas J, Cuevas-Nasu L et al. Encuesta Nacional de Salud y Nutrición 2018-19: metodología y perspectivas. Salud Publica Mex [Internet]. 2019; 61 (6): 917-923. Disponible en: http://dx.doi.org/10.21149/11095

  6. Manaf MRA, Nawi AM, Tauhid NM, Othman H, Rahman MRA, Yusoff HM et al. Prevalence of metabolic syndrome and its associated risk factors among staffs in a Malaysian public university. Sci Rep [Internet]. 2021; 11 (1): 8132. Available in: http://dx.doi.org/10.1038/s41598-021-87248-1

  7. Pouragha H, Amiri M, Saraei M, Pouryaghoub G, Mehrdad R. Body impedance analyzer and anthropometric indicators; predictors of metabolic syndrome. J Diabetes Metab Disord [Internet]. 2021; 20 (2): 1169-1178. Available in: http://dx.doi.org/10.1007/s40200-021-00836-w

  8. Jeon HH, Lee YK, Kim DH, Pak H, Shin SY, Seo JH. Risk for metabolic syndrome in the population with visceral fat area measured by bioelectrical impedance analysis. Korean J Intern Med [Internet]. 2021; 36 (1): 97-105. Available in: http://dx.doi.org/10.3904/kjim.2018.427

  9. Madeira FB, Silva AA, Veloso HF, Goldani MZ, Kac G, Cardoso VC et al. Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS One [Internet]. 2013; 8 (3): e60673. Available in: http://dx.doi.org/10.1371/journal.pone.0060673

  10. Liu P, Ma F, Lou H, Liu Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health [Internet]. 2013; 13 (1): 629. Available in: http://dx.doi.org/10.1186/1471-2458-13-629

  11. Berral de la Rosa FJ, Rodríguez Bies E. Impedancia bioeléctrica y su aplicación en el ámbito hospitalario. Rev Hosp Jua Mex. 2007; 74 (2): 104-112.

  12. Bahat G, Tufan A, Kilic C, Ayd?n T, Akpinar TS, Kose M et al. Cut-off points for height, weight and body mass index adjusted bioimpedance analysis measurements of muscle mass with use of different threshold definitions. Aging Male [Internet]. 2020; 23 (5): 382-387. Available in: http://dx.doi.org/10.1080/13685538.2018.1499081

  13. Accardi AJ, Matsubara BS, Gaw RL, Daleiden-Burns A, Heywood JT. Clinical utility of fluid volume assessment in Heart Failure patients using bioimpedance spectroscopy. Front Cardiovasc Med [Internet]. 2021; 8: 636718. Available in: http://dx.doi.org/10.3389/fcvm.2021.636718

  14. Svensson BJ, Dylke ES, Ward LC, Kilbreath SL. Electrode equivalence for use in bioimpedance spectroscopy assessment of lymphedema. Lymphat Res Biol [Internet]. 2019; 17 (1): 51-59. Available in: http://dx.doi.org/10.1089/lrb.2018.0002

  15. Wang N, Sun Y, Zhang H, Chen C, Wang Y, Zhang J et al. Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes. J Cachexia Sarcopenia Muscle [Internet]. 2021; 12 (6): 2154-2162. Available in: http://dx.doi.org/10.1002/jcsm.12822

  16. Kim SH, Jeong JB, Kang J, Ahn DW, Kim JW, Kim BG et al. Association between sarcopenia level and metabolic syndrome. PLoS One [Internet]. 2021; 16 (3): e0248856. Available in: http://dx.doi.org/10.1371/journal.pone.0248856

  17. Ramírez-Vélez R, Carrillo HA, Correa-Bautista JE, Schmidt-RioValle J, González-Jiménez E, Correa-Rodríguez M et al. Fat-to-muscle ratio: a new anthropometric indicator as a screening tool for metabolic syndrome in young colombian people. Nutrients [Internet]. 2018; 10 (8): 1027. Available in: http://dx.doi.org/10.3390/nu10081027

  18. Ruiz González SDR, Monroy Torres R, Malacara JM, Guardado-Mendoza R. Sensitivity and specificity of body mass index and main risk factors for cardiovascular disease in middle-income urban participants in Guanajuato, Mexico. Nutr Hosp [Internet]. 2022; 39 (5): 1027-1036. Available in: http://dx.doi.org/10.20960/nh.04074




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta Med. 2024;22