medigraphic.com
SPANISH

Odovtos - International Journal of Dental Sciences

ISSN 1659-1046 (Print)
Odovtos - International Journal of Dental Sciences
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 2

<< Back Next >>

Odovtos-Int J Dent Sc 2024; 26 (2)

Potential of Artificial Intelligence to Generate Health Research Reports of Decayed, Missed and Restored Teeth

Dantas CE, Andery CJ, Guerra ZBA, Gaêta-Araujo H, Oliveira-Santos C, Alaniz MA, Tirapelli C
Full text How to cite this article

Language: English
References: 15
Page: 14-19
PDF size: 378.18 Kb.


Key words:

Artificial intelligence, Radiology, Dentistry, Radiography.

ABSTRACT

This study aims to indicate the potential of artificial intelligence (AI) in epidemiological reports of decayed, missed and restored teeth. As a proof of concept our study model used panoramic x-ray images and an AI algorithm for tooth numbering, detection of the caries and restorations with accuracy over 80% for such diagnostic tasks. The output came as the number of decayed, missed and restored teeth according to patient´s age and the DMFT index (number of decayed, missing, and filled teeth) which varied from 3.6 (up to 20 years old) to 20.4 (+60 years old). Thus, it is suggested that AI is a promising method to automate health data collection through the analysis of x-rays.


REFERENCES

  1. Brasil. Ministério da Saúde. Secretaria deAtenção à Saúde. Secretaria de Vigilânciaem Saúde. SB Brasil 2010: Pesquisa Nacionalde Saúde Bucal: resultados principais /Ministério da Saúde. Secretaria de Atenção àSaúde. Secretaria de Vigilância em Saúde. –Brasília : Ministério da Saúde, 2012. 116 p.(Accessed February 27, 2023). Available in:https://bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal.pdf

  2. Roncalli A.G., Silva N.N., NascimentoA.C., Freitas C.H.S.M., Casotti E., PeresK.G., Moura L., Peres M.A., Freire M.C.M.,Cortes M.I.S., Vettore M.V., Paludetto JúniorM., Figueiredo N., Goes P.S.A., Pinto R.S.,Marques R.A.A., Moysés S.J., Reis S.C.G.B.,Narvai P.C. Relevant methodological issuesfrom the SBBrasil 2010 Project for nationalhealth surveys. Cad Saude Publica. 2012; 28Suppl: s40-57. doi: https://doi.org/10.1590/s0102-311x2012001300006

  3. Brasil. Relatório da consulta pública doprojeto técnico da pesquisa nacional desaúde bucal 2020. SB Brasil 2020. 35 p.(Accessed February 27, 2023). Available in:http://189.28.128.100/dab/docs/portaldab/documentos/cgsb/RelatorioConsultaPublicaSBBrasil.pdf

  4. Azevedo J.S., Azevedo M.S., Oliveira L.J.C.,Correa M.B., Demarco F.F. Needs for dentalprostheses and their use in elderly Braziliansaccording to the National Oral HealthSurvey (SBBrazil 2010): prevalence ratesand associated factors. Cad Saude Publica.2017; 33 (8): e00054016. doi: https://doi.org/10.1590/0102-311X00054016

  5. Miyazaki H., Jones J.A., Beltrán-AguilarE.D. Surveillance and monitoring of oralhealth in elderly people. Int Dent J. 2017;

  6. 67 Suppl 2 (Suppl 2): 34-41. doi: https://doi.org/10.1111/idj.12348

  7. Hosny A., Parmar C., Quackenbush J.,Schwartz L.H., Aerts H.J.W.L. Artificialintelligence in radiology. Nat Rev Cancer.2018; 18 (8): 500-510. doi: https://doi.org/10.1038/s41568-018-0016-5

  8. Heo M.S., Kim J.E., Hwang J.J., Han S.S.,Kim J.S., Yi W.J., Park I.W. Artificial intelligencein oral and maxillofacial radiology:what is currently possible? DentomaxillofacRadiol. 2021; 50 (3): 20200375. doi: https://doi.org/10.1259/dmfr.20200375

  9. Başaran M., Çelik Ö., Bayrakdar I.S., BilgirE., Orhan K., Odabaş A., Aslan A.F., JagtapR. Diagnostic charting of panoramic radiographyusing deep-learning artificial intelligencesystem. Oral Radiol 2022; 38 (3):363-369. doi: https://doi.org/10.1007/s11282-021-00572-0

  10. Bayrakdar I.S., Orhan K., Akarsu S., ÇelikÖ., Atasoy S., Pekince A., Yasa Y., BilgirE., Sağlam H., Aslan A.F., Odabaş A. Deeplearningapproach for caries detection andsegmentation on dental bitewing radiographs.Oral Radiol. 2022; 38 (4): 468-479.doi: https://doi.org/10.1007/s11282-021-00577-9

  11. Chen X., Guo J., Ye J., Zhang M., LiangY. Detection of proximal caries lesions onbitewing radiographs using deep learningmethod. Caries Res. 2022; 56 (5-6): 455-463.doi: https://doi.org/10.1159/000527418

  12. Abdalla-Aslan R., Yeshua T., Kabla D.,Leichter I., Nadler C. An artificial intelligencesystem using machine-learning for automaticdetection and classification of dental restorationsin panoramic radiography. Oral SurgOral Med Oral Pathol Oral Radiol. 2020; 130(5): 593-602. doi: https://doi.org/10.1016/j.oooo.2020.05.012

  13. Chen S.L., Chen T.Y., Huang Y.C., ChenC.A., Chou H.S., Huang Y.Y., Lin W.C., LiT.C., Yuan J.J., Abu P.A.R., Chiang W.Y.Missing teeth and restoration detection usingdental panoramic radiography based on transferlearning with CNNs. IEEE Access 2022;10: 118654-64. doi: https://doi.org/10.1109/ACCESS.2022.3220335

  14. Costa E.D., Gaêta-Araujo H., Carneiro J.A.,Zancan B.A.G., Baranauskas J.A., MacedoA.A.M., Tirapelli C. Development of a dentaldigital dataset for research in artificial intelligence:the importance of labeling performedby radiologists. Oral Surg Oral Med OralPathol Oral Radiol. 2023 Dec. doi: https://doi.org/10.1016/j.oooo.2023.12.006

  15. Carneiro J.A. Enhanced tooth segmentationalgorithm for panoramic radiographs. [dissertation].Ribeirão Preto: Universidade de SãoPaulo, Faculdade de Filosofia, Ciências eLetras de Ribeirão Preto; 2023 [cited in 2024-03-10]. doi:10.11606/D.59.2023.tde-20022024-073306




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Odovtos-Int J Dent Sc. 2024;26