medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 2

<< Back Next >>

Rev Biomed 2024; 35 (2)

Genetic damage in human blood cells exposed to germicidal lamps and cytoprotection of ascorbic acid

Reynoso-Silva M, Alvarez-Moya C, Barrientos-Ramírez L, Vargas-Radillo JJ, Rodríguez-Macías R
Full text How to cite this article

Language: English
References: 35
Page: 59-66
PDF size: 185.62 Kb.


Key words:

UV radiation, genetic damage, genotoxicity, ascorbic acid, comet assay.

ABSTRACT

Introduction. Germicidal lamps have a wavelength range of 200-280 nm and can affect the integrity of the DNA of people who handle this equipment. Human lymphocytes are excellent biomonitors of genetic damage and widely used with the comet assay.
Objective. Evaluation of genotoxicity in human blood cells exposed to UV-C radiation (254 nm) emitted by germicidal lamps and the cytoprotective effect of ascorbic acid, using the comet test.
Material and methods. Slides containing lymphocytes immersed in agarose gel were exposed to UV-C radiation (254 nm) for periods of 5, 10 and 15 minutes and 70 cm away. The antigenotoxic effect was determined in cells exposed to UV-C for 5 minutes and 70 cm away, subsequently the slides were subjected to an ascorbic acid solution for periods of 5, 10 and 15 mM for two hours. In both situations, genetic damage was quantified by the comet test using three parameters: tail length, tail moment, and migration groups.
Results. The three parameters detected significant genotoxic activity (p‹0.05) in the times of exposure to UV-C and cytoprotective effect of ascorbic acid (p‹0.05).
Conclusions. The handling of UV-C germicidal lamps is often wrong and dangerous to exposed people or organisms. These data suggest that ascorbic acid increases DNA protection in cells exposed to UV-C radiation.


REFERENCES

  1. Phillips DH, Arlt VM. Genotoxicity: damage to DNAand its consequences. Mol Clin Environ Toxicol. 2009;1: 87-110.

  2. Maluf SW, Passos DF, Bacelar A, Speit G, Erdtmann B.Assessment of DNA damage in lymphocytes of workersexposed to X‐radiation using the micronucleus test andthe comet assay. Environ Mol Mutagen. 2001; 38(4):

  3. 311-315. https://doi.org/10.1002/em.100293. Lee E, Oh E, Lee J, Sul D, Lee J. Use of the tail momentof the lymphocytes to evaluate DNA damage in humanbiomonitoring studies. Toxicol Sci. 2004; 81(1): 121-132. https://doi.org/10.1093/toxsci/kfh184

  4. Maluf SW. Monitoring DNA damage following radiationexposure using cytokinesis–block micronucleus methodand alkaline single-cell gel electrophoresis. Clin ChimActa. 2004;347(1-2): 15-24. https://doi.org/10.1016/j.cccn.2004.04.010

  5. Narita K, Asano K, Morimoto Y, Igarashi T, HamblinMR, Dai T, et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcusaureus infection in mouse wounds. J Photoch PhotobiolB. 2018;178: 10-18. https://doi.org/10.1016/j.jphotobiol.2017.10.030

  6. Byrns G, Barham B, Yang L, Webster K, Rutherford G,Steiner G, et al. The uses and limitations of a hand-heldgermicidal ultraviolet wand for surface disinfection. JOccup Environ Hyg. 2017; 14(10): 749–757. https://doi.org/10.1080/15459624.2017.1328106

  7. Card KJ, Crozier D, Dhawan A, Dinh M, Nathan D,Farrokhian N, et al. (2020). UV Sterilization of PersonalProtective Equipment with Idle Laboratory BiosafetyCabinets During the COVID-19 Pandemic. MedRxiv.Preprint.https://www.medrxiv.org/content/10.1101/2020.03.25.20043489v2

  8. Rutala WA, Gergen MF, Weber DJ. RoomDecontamination with UV Radiation. Infect ContHosp Ep. 2010; 31(10): 1025–1029. https://doi.org/10.1086/656244

  9. Leung KCP, Ko TCS. Improper Use of the GermicidalRange Ultraviolet Lamp for Household DisinfectionLeading to Phototoxicity in COVID-19 Suspects.Cornea. 2020; 40(1): 121-122. https://doi.org/10.1097/ico.00000002397

  10. Urban L, Charles F, de Miranda MRA, Aarrouf J.Understanding the physiological effects of UV-C lightand exploiting its agronomic potential before and afterharvest. Plant Physiol Bioch. 2016; 105: 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004

  11. US Environmental Protection Agency. Ultravioletdisinfection guidance manual for the final long term 2enhanced surface water treatment rule. United StatesEnvironmental Protection Agency, Office of Water(4601) EPA 815-R06-007. Washington: USEPA;2006. http://www.epa.gov/safewater/disinfection/lt2/compliance.html

  12. Zaffina S, Camisa V, Lembo M, Vinci MR, Tucci MG,Borra M, et al. Accidental Exposure to UV RadiationProduced by Germicidal Lamp: Case Report and RiskAssessment. Photoch Photobio. 2012;88(4):1001-1004.https://doi.org/10.1111/j.1751-1097.2012.01151.x

  13. International Commission on Illumination. UV-Cphotocarcinogenesis risks from germicidal lamps |CIE Vienna. Austria: Commission International DeL’Eclairage; 2010. http://cie.co.at/publications/uv-cphotocarcinogenesis-risks-germicidal-lamps

  14. Chatterjee N, Walker GC. Mechanisms of DNA damage,repair, and mutagenesis. Environ Mol Mutagen.2017;58(5): 235–263. https://doi.org/10.1002/em.22087

  15. Zúñiga GZ. Sistemas de detección de daño genético.In: Alvarez-Moya C. Genética, Ambiente y Salud.Guadalajara: Editorial Universidad de Guadalajara;2013. P. 55-63.

  16. Glei M, Schneider T, Schlörmann W. Comet assay: anessential tool in toxicological research. Arch Toxicol.2016; 90(10): 2315-2336. https://doi.org/10.1007/s00204-016-1767-y

  17. Vodicka P, Vodenkova S, Opattova A, Vodickova L.DNA damage and repair measured by comet assay incancer patients. Mutat Res/Genet Toxi En. 2019; 843:95-110. https://doi.org/10.1016/j.mrgentox.2019.05.009

  18. Reynoso-Silva M, Álvarez-Moya C, Ramírez-VelascoR, Sámano-León AG, Arvizu-Hernández E, Castañeda-Vásquez H, et al. Migration Groups: A Poorly ExploredPoint of View for Genetic Damage Assessment UsingComet Assay in Human Lymphocytes. Appl Sci. 2021;11(9): 4094. https://doi.org/10.3390/app11094094

  19. Alvarez-Moya C, Reynoso-Silva M, Canales-AguirreAA, Chavez-Chavez JO, Castañeda-Vázquez H, Feria-Velasco AI. Heterogeneity of genetic damage in cervicalnuclei and lymphocytes in women with differentlevels of dysplasia and cancer-associated risk factors.BioMed Res Int. 2015; 2015: 293408. https://doi.org/10.1155/2015/293408

  20. Olive PL, Durand RE. Heterogeneity in DNA damageusing the comet assay. Cytometry Part A. 2005; 66A(1):1-8. https://doi.org/10.1002/cyto.a.20154

  21. Olive PL, Banáth JP, Durand RE. Detection ofsubpopulations resistant to DNA-damaging agents inspheroids and murine tumours. Mutat Res-Fund Mol M.1997; 375(2): 157–165. https://doi.org/10.1016/s0027-5107(97)00011-0

  22. Nishigori C, Yamano N, Kunisada M, Nishiaki-SrawadaA, Ohashi H, Igarashi T. Biological Impact of ShorterWavelength Ultraviolet Radiation-C. PhotochemPhotobiol. 2023; 99(2): 335–343. https://doi.org/10.1111/php.13742

  23. Narra VR, Howell RW, Sastry KS, Rao DV. Vitamin Cas a radioprotector against iodine-131 in vivo. J NuclMed. 1993;34(4): 637-640. https://jnm.snmjournals.org/content/jnumed/34/4/637.full.pdf

  24. Maeda J, Allum AJ, Mussallem JT, Froning CE, HaskinsAH, Buckner MA, et al. Ascorbic Acid 2-GlucosidePretreatment Protects Cells from Ionizing Radiation,UVC, and Short Wavelength of UVB. Genes. 2020:11(3); 238. https://doi.org/10.3390/genes11030238

  25. Speit G, Hartmann A. The comet assay (single-cell geltest). A sensitive genotoxicity test for the detection ofDNA damage and repair. Method Mol Biol.1999; 113:203-212. https://doi.org/10.1385/1-59259-675-4:203

  26. Anderson MJ. Permutation tests for univariate ormultivariate analysis of variance and regression. CanJ Fish Aquat Sci. 2001; 58(3): 626–639. https://doi.org/10.1139/f01-004

  27. Phillips DH, Arlt VM. Genotoxicity: damage to DNAand its consequences. Mol Clin Environ Toxicol. 2009;(1): 87-110. https://doi: 10.1007/978-3-7643-8336-7_4

  28. Pfeifer GP, Besaratinia A. UV wavelength-dependentDNA damage and human non-melanoma and melanomaskin cancer. Photochem. Photobiol. Sci. 2012; 11(1): 90-97. https://doi.org/10.1039/c1pp05144j

  29. Hosseinimehr SJ. Trends in the development ofradioprotective agents. Drug Discov Today. 2007; 12(19):794-805. https://doi.org/10.1016/j.drudis.2007.07.017

  30. Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidantproperties of ascorbic acid and gallic acid. Food Chem.2002; 79(3): 307-313. https:///doi.org/10.1016/s0308-8146(02)00145-0

  31. Carr A, Maggini S. Vitamin C and Immune Function.Nutrients. 2017; 9(11): 1211-1217. https://doi.org/10.3390/nu9111211

  32. Konopacka M, Palyvoda O, Rzeszowska-Wolny J.Inhibitory effect of ascorbic acid post-treatment onradiation-induced chromosomal damage in humanlymphocytes in vitro. Teratogen Carcin Mut. 2002;22(6): 443–450. https://doi.org/10.1002/tcm.10040

  33. Konopacka M, Rzeszowska-Wolny J. AntioxidantVitamins C, E and β-carotene reduce DNA damagebefore as well as after γ-ray irradiation of humanlymphocytes in vitro. Mutat Res-Gen Toxicol EnvironMut. 2001; 491(1–2): 1–7. https://doi.org/10.1016/s1383-5718(00)00133-9

  34. Sram RJ, Binkova B, Rossner P. Vitamin C forDNA damage prevention. Mutat Res-Fund Mol M.2012; 733(1–2): 39–49. https://doi.org/10.1016/j.mrfmmm.2011.12.001

  35. Collins AR, El Yamani N, Lorenzo Y, ShaposhnikovS, Brunborg G, Azqueta A. Controlling variation inthe comet assay. Front Genet. 2014; 5: 359. https://doi.org/10.3389/fgene.2014.00359




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2024;35