medigraphic.com
SPANISH

Salud Mental

ISSN 0185-3325 (Print)
Órgano Oficial del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 3

<< Back Next >>

Salud Mental 2024; 47 (3)

Design, reliability, and validity of the acceptability of internet-based psychological interventions questionnaire in Mexican university students

Mondragón GR, Martínez VNA, Tiburcio SM, Fernández TM
Full text How to cite this article

Language: Spanish
References: 43
Page: 107-116
PDF size: 334.63 Kb.


Key words:

Internet-based interventions, acceptability, internet, users of mental health services, eMental Health.

ABSTRACT

Introduction. Internet-based psychological interventions are an effective option for treating mental health problems. Identifying the acceptability of these services makes it possible to improve their design and user adherence. However, only a few psychometric instruments exist to evaluate this acceptability. Objective. To design and evaluate the psychometric properties of an internet-based psychological interventions questionnaire, based on the theory of technology acceptance. Method. The study was divided into three parts: 1) Design of instrument items, 2) analysis of psychometric properties and exploratory factor analysis, and 3) confirmatory factor analysis. Results. The instrument proved to have adequate psychometric properties, with the following goodness-of-fit measurements: χ2/df = 168.92/74 = 2.28, CFI = .935, TLI = .920, RMSEA = .080, 95% CI [.64, .096]. The analysis of internal consistency found an α = .91 for the total scale, an α = .91 for the first factor, “Approval of use,” an α = .79 for the second factor, “Perceived usefulness,” and an α = .59 for the third factor, “Perceived risk.” Discussion and conclusion. The evaluation of factors associated with greater acceptability is a potential tool for improving awareness of the use of online psychological interventions.


REFERENCES

  1. Abolade, T. O., & Durosinmi, A. E. (2018). The Benefits and Challenges ofE-Health Applications in Developing Nations: A Review. In Proceedings ofthe 14th ISTEAMS International Multidisciplinary Conference. Ilorin, Nigeria:AlHikmah University.

  2. Arenas-Landgrave, P., de la Rosa-Gómez, A., Carreón-Martínez, A. E., Esquivel-González, D., Martínez-Luna, S. C., Hernández-Aguirre, O., Olivares-Avila,S. M., Plata-Ochoa, A.Y., González-Santiago, E., & Domínguez-Rodríguez, A.(2022). Atención psicológica vía chat desde una plataforma de salud mentalante la COVID-19. Revista de Investigación en Psicología, 25(2), 185-202. doi:10.15381/rinvp.v25i2.22916

  3. Arjadi, R., Nauta, M. H., & Bockting, C. L. (2018). Acceptability of internet-basedinterventions for depression in Indonesia. Internet Interventions, 13, 8-15. doi:10.1016/j.invent.2018.04.004

  4. Asociación Mexicana de Internet [AMIPCI]. (2016). 12 – Estudio sobre los Hábitosde los usuarios de internet en México 2016. Retrieved from https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

  5. Asociación Mexicana de Internet [AMIPCI]. (2018). 14 – Estudio sobre los Hábitosde los usuarios de internet en México 2018. Retrieved from https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

  6. Banna, S., Hasan, H., & Meloche, J. (2010). A subjective evaluation of attitudestowards E-health. The 2010 International Conference on Innovation andManagement. Taiwan: EBRC.

  7. Blankers, M. (2011). E-Mental Health Interventions for Harmful Alcohol Use:Research Methods and Outcomes [Doctoral Dissertation]. Amsterdam:University of Amsterdam.

  8. Davis, F. (1989). Perceived Usefulness, Perceived Ease of use and User Acepptanceof Information Technology. MIS Quarterly, 319-340. doi: 10.2307/249008

  9. de la Rosa-Gómez, A., & Waldherr, K. (2023). Highlights in digital mentalhealth 2021/22. Frontiers in Digital Health, 4, 1093375. doi: 10.3389/fdgth.2022.1093375

  10. de la Rosa-Gómez, A., Moreyra, L., & De la Rosa-Montealvo, N. (2020).Intervenciones eficaces vía internet para la salud emocional en adolescentes:una propuesta ante la pandemia por COVID-19. Hamut´ay, 7(2), 18-33. doi:10.21503/hamu.v7i2.2128

  11. Dinesen, B., Huniche, L., & Toft, E. (2013) Attitudes of COPD patients towardstele-rehabilitation: across-sector case study. International Journal ofEnvironmental Research and Public Health, 10(11), 6184-98. doi: 10.3390/ijerph10116184

  12. Dominguez-Rodriguez, A., Sanz-Gomez, S., González Ramírez, L. P., Herdoiza-Arroyo, P. E., Trevino Garcia, L. E., de la Rosa-Gómez, A., González-Cantero,J. O., Macias-Aguinaga, V., & Miaja, M. (2023). The Efficacy and Usabilityof an Unguided Web-Based Grief Intervention for Adults Who Lost a LovedOne During the COVID-19 Pandemic: Randomized Controlled Trial. Journalof Medical Internet Research, 25, e43839. doi: 10.2196/43839

  13. Ellis, D. M., & Anderson, P. L. (2023). Validation of the Attitudes TowardsPsychological Online Interventions Questionnaire Among Black Americans:Cross-cultural Confirmatory Factor Analysis. JMIR Mental Health, 10, e43929.doi: 10.2196/43929

  14. Fishbein M., & Ajzen, I. (1980). Understanding attitudes and predicting socialbehavior. Londres: Prentice Hall International.

  15. Frueh, B. C., Henderson, S., & Myrick, H. (2005). Telehealth service delivery forpersons with alcoholism. Journal of Telemedicine and Telecare, 11(7), 372-375.doi: 10.1258/135763305774472060

  16. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariancestructure analysis: Conventional criteria versus new alternatives. StructuralEquation Modeling: A Multidisciplinary Journal, 6(1), 1-55.

  17. Jung, M., & Loria, K. (2010). Acceptance of Swedish e-health services. Journal ofMultidisciplinary Healthcare, 3, 55-63. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024889/

  18. Kok, G., Bockting, C., Burger, H., Smit, F., & Riper, H (2014). Mobile CognitiveTherapy: Adherence and acceptability of an online intervention in remittedrecurrently depressed patients. Internet Interventions, 1(2), 65-73. doi:10.1016/j.invent.2014.05.002

  19. Lamela, D., Cabral, J., Coelho, S., & Jongenelen, I. (2020). Personal stigma,determinants of intention to use technology, and acceptance of internet-basedpsychological interventions for depression. International Journal of MedicalInformatics, 136, 104076. doi: 10.1016/j.ijmedinf.2020.104076

  20. Lara, M. A., Patiño, P., Tiburcio, M., & Navarrete, L. (2022). Satisfaction andacceptability ratings of a web-based self-help intervention for depression:retrospective cross-sectional study from a resource-limited country. JMIRFormative Research, 6(4), e29566. doi: 10.2196/29566

  21. Lee, J., Nguyen, A., Berg, A., Amin, A., Bachman, M., Guo, Y., & Evangelista, L.(2014). Attitudes and Preferences on the Use of Mobile Health Technologyand Health Games for Self-Managment: Interviews with older adults onanticoagulation therapy. JMIR Mhealth and Uhealth, 2(3), e32. doi: 10.2196/mhealth.3196

  22. Mohr, D., Schueller, S., Montague, E., Burns, M. N., & Rashidi, P. (2014) TheBehavioral Intervention Technology Model: An Integrated Conceptual andTechnological Framework for eHealth and mHealth Interventions. Journal ofMedical Internet Research, 16(6), 1-15. doi: 10.2196/jmir.3077

  23. Molloy, A., & Anderson, P. L. (2021). Increasing Acceptability and OutcomeExpectancy for Internet-Based Cognitive Behavioral Therapy During theCOVID-19 Pandemic. Telemedicine and e-Health, 28(6), 888-895. doi:10.1089/tmj.2021.0393

  24. Morland, L. A., Mackintosh, M. A., Rosen, C. S., Willis, E., Resick, P., Chard, K., &Frueh, B. C. (2015). Telemedicine versus in‐person delivery of cognitive processingtherapy for women with posttraumatic stress disorder: A randomized noninferioritytrial. Depression and Anxiety, 32(11), 811-820. doi: 10.1002/da.22397

  25. Musiat, P., Goldstone, P., & Tarrier, N. (2014). Understanding the acceptability ofe-mental health:attitudes and expectations towards computerised self-helptreatments for mental health problems. BMC Psychiatry, 14(1), 1-8. doi:10.1186/1471-244X-14-109

  26. Neuendorf, K. A. (2019). Content analysis and thematic analysis. In P. Brough (Ed.).Advanced, research methods for applied psychology: Design, analysis andreporting (pp. 211-223). New York: Routledge.

  27. Ng, M. M., Firth, J., Minen, M., & Torous, J. (2019). User Engagement in MentalHealth Apps: A Review of Measurement, Reporting, and Validity. PsychiatricServices, 70(7), 538-544. doi: 10.1176/appi.ps.201800519

  28. Olden, M., Wyka, K., Cukor, J., Peskin, M., Altemus, M., Lee, F. S., Finkelstein-Fox, L., Rabinowitz, T., & Difede, J. (2017). Pilot study of a telehealthdeliveredmedication-augmented exposure therapy protocol for PTSD. TheJournal of Nervous and Mental Disease, 205(2), 154-160. doi: 10.1097/NMD.0000000000000563

  29. Pavlou, P. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trustand Risk with the Technology Acceptance Model. International Journal ofElectronic Commerce, 7(3), 101-134. doi: 10.1080/10864415.2003.11044275

  30. Rogers, C. R. (1963). Toward a science of the person. Journal of HumanisticPsychology, 3(2), 72-92.

  31. Rojas-Jara, C., Polanco-Carrasco, R., Caycho-Rodríguez, T., Muñoz-Vega,C., Muñoz-Marabolí, M., Luna-Gómez, T., & Muñoz-Torres, T. (2022).Telepsicología para psicoterapeutas: lecciones aprendidas en tiempos delCovid-19. Revista Interamericana de Psicología/Interamerican Journal ofPsychology, 56(2), e1733. doi: 10.30849/ripijp.v56i2.1733

  32. Santana, L., & Fontenelle, L.F.(2011). A review of studies concerning treatmentadherence of patients with anxiety disorders. Patient Preference and Adherence,5, 427-439. doi: 10.2147/PPA.S23439

  33. Schaub, M. P., Tiburcio, M., Martínez-Vélez, N., Ambekar, A., Bhad, R., Wenger,A., Baumgartner, C., Padruchny, D., Osipchik, S., Poznyak, V., Rekve, D.,Landi Moraes F., Monezi Andrade A. L., Souza-Formigoni, M. L. O., & WHOE-Health Project On Alcohol And Health Investigators Group. (2021). Theeffectiveness of a web-based self-help program to reduce alcohol use amongadults with drinking patterns considered harmful, hazardous, or suggestive ofdependence in four low-and middle-income countries: randomized controlledtrial. Journal of Medical Internet Research, 23(8), e21686. doi: 10.2196/21686

  34. Scheibner, J., Sleigh, J., Ienca, M., & Vayena, E. (2021). Benefits, challenges, andcontributors to success for national eHealth systems implementation: a scopingreview. Journal of the American Medical Informatics Association, 28(9), 2039-2049. doi: 10.1093/jamia/ocab096

  35. Schröder, J., Sautier, L., Kriston, L., Berger, T., Meyer, B., Späth, C., Köther, U.,Nestoriuc, Y., Klein, J. P., & Moritz, S. (2015). Development of a questionnairemeasuring Attitudes towards Psychological Online Interventions-the APOI.Journal of Affective Disorders, 187, 136-141. doi: 10.1016/j.jad.2015.08.044

  36. Simon, N., McGillivray, L., Roberts, N. P., Barawi, K., Lewis, C. E., & Bisson,J. I. (2019). Acceptability of internet-based cognitive behaviouraltherapy (i-CBT) for post-traumatic stress disorder (PTSD): a systematicreview. European Journal of Psychotraumatology, 10(1), 1646092. doi:10.1080/20008198.2019.1646092

  37. Simon, S., Evans, S., Benjamin, A., Delano, D. & Bates, D. (2009). Patients´AttitudesToward Electronic Health Information Exchange: Qualitive Study. Journal ofMedical Internet Research, 11(3), 132-139. doi:10.2196/jmir.1164

  38. Sobowale, K., Nguyen, M., Weiss, B., Van, T. H., & Trung, L. T. (2016). Acceptabilityof internet interventions for youth mental health in Vietnam. Global MentalHealth, 3, e22. doi: 10.1017/gmh.2016.18

  39. Tiburcio, M., Lara, M., Martínez, N., Fernández, M., & Aguilar, A. (2018) WebBased Intervention to Reduce Substance Abuse and Depression: A Three ArmRandomized Trial in Mexico. Substance Use & Misuse, 53(13) 2220-2231. doi:10.1080/10826084.2018.1467452

  40. Venkatesh, V., & Davis, F. (2000). A Theorical Extension of the TechnologyAcceptance Model: Four Longitudinal Field Studies. Management Science,46(2), 186-204. doi: 10.1287/mnsc.46.2.186.11926

  41. Venkatesh, V., Morris, M., Davis, G., Davis, F. (2003). User acceptance ofinformation technology: toward a unified view. MIS Quarterly, 27(3), 425-478.doi: 10.2307/30036540

  42. World Health Organization. (2016). Global diffusion of eHealth: making universalhealth coverage achievable. Report of the third global survey on eHealth.Geneva: World Health Organization.

  43. Zhang, X., Yu, P., Yan, J., & Spil, I. (2015). Using diffusion of innovation theoryto understand the factors impacting patient acceptance and use of consumere-health innovations: a case study in a primary care clinic. BMC Health ServicesResearch, 15, 1-15. doi: 10.1186/s12913-015-0726-2




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Salud Mental. 2024;47