medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Evaluating the antimicrobial activity of Bacillus australimaris and Pseudoalteromonas sp. associated with the octocoral Leptogorgia alba

Avila-Castro E, Vargas-Ponce O, Díaz-Pérez L, Rodríguez-Zaragoza FA, Hernández-Zulueta J, Aguila-Ramírez RN
Full text How to cite this article

Language: Spanish
References: 40
Page: 1-9
PDF size: 343.54 Kb.


Key words:

antagonism, marine bacteria, octocorals, pathogens.

ABSTRACT

Octocoral-associated bacterial assemblages provide them with defensive strategies through production of antimicrobial compounds, protecting against pathogenic microorganisms by avoiding colonization by other microorganisms. Due to the decrease in the discovery of new compounds in terrestrial environments, the potential of marine bacterial strains represents a source of novel bioactive compounds. Our objective was to evaluate the antimicrobial activity of the bacterial strains of Bacillus australimaris and those of Pseudoalteromonas sp. isolated from the octocoral Leptogorgia alba from shallow and mesophotic areas, to determine the degree of capacity they have to inhibit the growth of human and aquaculture pathogens, for which cross-streak tests, agar diffusion by drop, well diffusion, disk diffusion, growth on cellulose and polystyrene microplate were used. Antagonism of B. australimaris was evident towards pathogens Escherichia coli, Listonella anguillarum, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, and Vibrio campbellii. For its part, Pseudoalteromonas sp. prevented the development of the pathogens E. coli, L. anguillarum, L. monocytogenes, S. iniae, and V. campbellii. The results of this work show that bacteria associated with gorgonid organisms are a potential biotechnological resource in antimicrobial activity.


REFERENCES

  1. Abeytia, R., Guzmán, H. M. & Breedy, O. (2013). Speciescomposition and bathymetric distribution of gorgonians(Anthozoa: Octocorallia) on the Southern Mexican Pacificcoast. Revista de Biología Tropical, 61(3), 1157-1166.

  2. Atencio, L. A., Dal Grande, F., Young, G. O., Gavilán, R.,Guzmán, H. M., Schmitt, I., Mejía, L, C. & Gutiérrez,M. (2018). Antimicrobial-producing Pseudoalteromonasfrom the marine environment of Panama shows a highphylogenetic diversity and clonal structure. Journal ofbasic microbiology,58(9), 747-769. https://doi.org/10.1002/jobm.201800087

  3. Bowman, J. P. (2007). Bioactive compound synthetic capacityand ecological significance of marine bacterial genusPseudoalteromonas. Marine drugs, 5(4), 220-241. https://doi.org/10.3390/md504220

  4. Boya, C. A., Herrera, L., Guzman, H. M. & Gutierrez, M. (2012).Antiplasmodial activity of bacilosarcin A isolated from theoctocoral-associated bacterium Bacillus sp. collected inPanama. Journal of Pharmacy & Bioallied Sciences, 4(1),66. https://doi.org/10.4103/0975-7406.92739

  5. Breedy, O. & Cortés, J. (2014). Gorgonias (octocorallia:gorgoniidae) de las aguas someras del Pacífico Norte deCosta Rica. Revista de Biología Tropical, 62(4), 43-62.https://doi.org/10.15517/rbt.v62i4.20032

  6. Breedy, O. & Cortés, J. (2016). Octocorals (Coelenterata:Anthozoa: Octocorallia) of Isla del Coco, Costa Rica.Revista de Biología Tropical, 5(6), 71–77. https://doi.org/10.15517/rbt.v56i2.26942

  7. Breedy, O. & Guzman, H. M. (2007). A revision of the genusLeptogorgia Milne Edwards & Haime, 1857 (Coelenterata;Octocorallia: Gorgoniidae) in the eastern Pacific. Zootaxa,1419, 1−90. https://doi.org/10.5281/zenodo.188707

  8. Breedy, O. Hickman Jr., C. P. & Williams, G. C. (2009).Octocorals in the Galapagos Islands. GalapagosResearch, 66, 27-31. http://hdl.handle.net/1834/36241

  9. Correa, H., Haltli, B., Duque, C. & Kerr, R. (2013). Bacterialcommunities of the gorgonian octocoral Pseudopterogorgiaelisabethae.Microbial ecology, 66(4), 972-985. https://doi.org/10.1007/s00248-013-0267-3

  10. de González, J. V. S., Shadid, O. B. & Núñez, J. C. (2021).Gorgonias (Octocorallia: Alcyonacea) de aguas someras deEl Salvador. Realidad y Reflexión, 54(54), 66-94. https://orcid.org/0000-0001-8548-3790

  11. Debbab, A., Aly, A. H., Lin, W. H. & Proksch, P. (2010).Bioactive Compounds from Marine Bacteria and Fungi.Microbial Biotechnology, 3, 544–563. https://orcid.org/10.1111/j.1751-7915.2010.00179.x

  12. Duchassaing, P. & Michelotti, J. (1864). Supplément aumémoire sur les coralliaires des Antilles. Memorie dellaReale Accademia della Scienze di Torino, 2 (23), 97-206.

  13. Eskander, R., Al-Sofyani, A. A., El-Sherbiny, M. M., Ba-Akdah,M. A. & Satheesh, S. (2018). Chemical Defense of Soft CoralSinularia polydactyla from the Red Sea Against MarineBiofilm-Forming Bacteria. Journal of Ocean Universityof China, 17(6), 1451-1457. https://orcid.org/10.1007/s11802-018-3657-9

  14. Falkowski, P. G., Fenchel, T. & Delong, E. F. (2008). Themicrobial engines that drive Earth’s biogeochemicalcycles. Science, 320(5879), 1034-1039. https://orcid.org/10.1126/science.1153213

  15. Fenical, W. & Jensen, P. R. (1993). Marine microorganisms:a new bio-medical resource, 419-457. In: Attaway, D.H. & Zabrosky, O. R. (Eds.) Marine biotechnology:pharmaceutical and bioactive natural products. PlenumPress, New York.

  16. Gao, C. H., Tian, X. P., Qi, S. H., Luo, X. M., Wang, P. &Zhang, S. (2010). Antibacterial and antilarval compoundsfrom marine gorgonian-associated bacterium Bacillusamyloliquefaciens SCSIO 00856. Journal Antibiotcs, 63,191–193. https://doi.org/10.1038/ja.2010.7

  17. Garrido, A., Atencio, L. A., Bethancourt, R., Bethancourt,A., Guzmán, H., Gutiérrez, M. & Durant-Archibold,A. A. (2020). Antibacterial Activity of Volatile OrganicCompounds Produced by the Octocoral-AssociatedBacteria Bacillus sp. BO53 and Pseudoalteromonas sp.GA327. Antibiotics, 9(12), 923. https://orcid.org/10.3390/antibiotics9120923

  18. Handayani, D. P., Isnansetyo, A., Istiqomah, I. & Jumina,J. (2022). New report: Genome mining untaps theantibiotics biosynthetic gene cluster of Pseudoalteromonasxiamenensis STKMTI. 2 from a mangrove soil sediment.Marine Biotechnology, 24(1), 190-202.

  19. Ivanova, E. P., Vysotskii, M. V., Svetashev, V. I., Nedashkovskaya,O. I., Gorshkova, N. M., Mijhailov, V. V.,Yumoto, N., Shigeri, Y., Taguchi, T. & Yoshikawa, S.(1999). Characterization of Bacillus strains of marine origin.International Microbiology, 2, 267-271.

  20. Karl, D. M. & Church, M. J. (2014). Microbial oceanography andthe Hawaii Ocean Time-series programme.Nature ReviewsMicrobiology, 12(10), 699-713. https://doi.org/10.7773/cm.v41i4.2492

  21. Ledoux, J. B. & Antunes, A. (2018) Beyond the beaten path:improving natural products bioprospecting using an ecoevolutionaryframework–the case of the octocorals. CriticalReviews in Biotechnology, 38(2), 184-198. https://doi.org/10.1080/07388551.2017.1331335

  22. Martínez-Díaz, Y. R. (2010). Evaluación de un bioensayopara medir la inhibición de biopelículas bacterianas conindicativo de la actividad antifouling de compuestos deorigen natural. Bogotá, Colombia. Universidad Nacional deColombia. https://repositorio.unal.edu.co/handle/unal/8461

  23. Martínez-Luis, S., Ballesteros, J. & Gutiérrez, M. (2011).Antibacterial constituents from the octocoral-associatedbacterium Pseudoalteromonas sp. Revista latinoamericanade química, 39(1-2), 75-83.

  24. Mehbub, M. F. Lei, J., Franco, C. & Zhang, W. (2014). Marinesponge derived natural products between 2001 and 2010:trends and opportunities for discovery of bioactives.Marine Drugs, 12(8), 4539–4577. https://doi.org/10.3390/md12084539

  25. Moree, W. J., McConnell, O. J., Nguyen, D. D., Sanchez, L.M., Yang, Y. L., Zhao, X., Wei-Ting, L., Boudreau, P. D.,Srinivasan, J., Atencio, L., Ballesteros, J., Gavilán, R. G.,Torres-Mendoza, D., Guzmán, H. M., Gerwick, W. H.,Gutiérrez, M. & Dorrestein, P. C. (2014). Microbiota ofhealthy corals are active against fungi in a light-dependentmanner. ACS chemical biology, 9(10), 2300-2308. https://doi.org/10.1021/cb500432j

  26. Mouchka, M. E., Hewson, I. & Harvell, C. D. (2010). Coralassociatedbacterial assemblages: current knowledgeand the potential for climate-driven impacts. Integrativeand comparative biology, 50(4), 662-674. https://doi.org/10.1093/icb/icq061

  27. Muscholl-Silberhorn, A., Thiel,V. & Imhoff, J. (2008).Abundance and bioactivity of cultured sponge-associatedbacteria from the Mediterranean Sea. Microbial Ecology,55, 94-106.

  28. Pabel, C. T., Vater, J., Wilde, C., Franke, P., Hofemeister, J.,Adler, B., Bringmann, G., Hacker, J. & Hentschel, U.(2003). Antimicrobial activities and matrix-assisted laserdesorption/ionization mass spectrometry of Bacillus isolatesfrom the marine sponge Aplysina aerophoba. MarineBiotechnology, 5(5), 424-34.

  29. Raimundo, I. Silva, S. G. Costa, R. & Keller-Costa,T. (2018). Bioactive secondary metabolites fromoctocoral-associated microbes—new chances forblue growth. Marine drugs, 16(12), 485. https://doi.org/10.3390/md16120485

  30. Ríos-Jara, E. (2016). Inventario de la biota marina (cnidarios,poliquetos, moluscos, crustáceos, equinodermos y peces)del Santuario Islas e Islotes de Bahía Chamela, Jalisco,México. Centro Universitario de Ciencias Biológicas yAgropecuarias. Departamento de Ecología. Universidad deGuadalajara. Bases de datos SNIB-CONABIO, proyectoJF023. Ciudad de México

  31. Rizzo, C. & Lo Giudice, A. (2018). Marine invertebrates:Underexplored sources of bacteria producing biologicallyactive molecules. Diversity, 10(3), 52. https://doi.org/10.3390/d10030052

  32. Sánchez, J. A. Dueñas, L. F., Rowley, S. J. Gonzalez-Zapata, F.L., Vergara, D. C., Montaño-Salazar, S. M., Calixto-Botía,I., Gómez, C. E., Abeyta, R., Colin, P, L., Cordeiro, R. T.,S. & Pérez, C. D. (2019). Gorgonian corals. In Mesophoticcoral ecosystems (pp. 729-747). Springer, Cham.

  33. Sánchez, J. A., Gómez, C. E., Escobar, D. & Dueñas, L. F. (2011).Diversidad, abundancia y amenazas de los octocorales de laisla Malpelo, Pacífico Oriental Tropical, Colombia. Boletínde Investigaciones Marinas y Costeras, 40,139-154.

  34. Sang, V. T., Dat, T. T. H., Vinh, L. B., Cuong, L. C. V., Oanh, P.T. T., Ha, H., Kim, Y. H., Anh, H. L. T. & Yang, S. Y. (2019).Coral and coral-associated microorganisms: A prolificsource of potential bioactive natural products. Marinedrugs, 17(8), 468. https://doi.org/10.3390/md17080468

  35. Shnit-Orland, M. & Kushmaro, A. (2009). Coral mucusassociatedbacteria: A possible first line of defense.FEMS Microbiology Ecology, 67, 371–380. https://doi.org/10.1111/j.1574-6941.2008.00644.x

  36. Soler-Hurtado, M., Megina, C., Machordom, A. & López-González, P. J. (2017). Foxed intra-and interspecificdifferentiation in Leptogorgia (Octocorallia: Gorgoniidae).A description of a new species based on multiple sources ofevidence. Scientia Marina, 81(2). https://doi.org/10.3989/scimar.04509.01C

  37. Stincone, P. & Brandelli, A. (2020). Marine bacteria assource of antimicrobial compounds. Critical reviews inbiotechnology, 40(3), 306-319. https://doi.org/10.1080/07388551.2019.1710457

  38. Thangapaul, A. J., Praveevn, M. M. & Chinnachamy, C. (2019).Antagonistic activity of an epibiotic Bacillus strain SG3 fromGorgonian coral, Junceella juncea (Pallas, 1766). PakistanJournal of Pharmaceutical Sciences, 32(3), 969-973.

  39. Webster, N. S. & Reusch, T. B. (2017). Microbial contributionsto the persistence of coral reefs. The ISME journal, 11(10),2167-2174. https://doi.org/10.1038/ismej.2017.66

  40. Zhang, H. L., Hua, H. M., Pei, Y. H. & Yao, X. S. (2004). Threenew cytotoxic cyclic acylpeptides from marine Bacillus sp.Chemical and Pharmaceutical Bulletin, 52, 1029-1030.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26