medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Identification of factors associated with increased CRABP1 gene expression in patients with squamous intraepithelial lesions and cervical cancer

Arellano-Ortiz AL, Jiménez-Vega F, Salcedo-Vargas M, Muñiz-Hernández S
Full text How to cite this article

Language: English
References: 44
Page: 1-13
PDF size: 484.02 Kb.


Key words:

cervical cancer, CRABP1, obesity, retinol, squamous intraepithelial lesion.

ABSTRACT

Cellular Retinoic Acid Binding Protein-1 (CRABP1) facilitates retinoid metabolism; however, an abnormal expression might influence cancers developed. Biopsy samples were evaluated from patients with cervical cancer (CC), high-grade (HSIL), and lowgrade squamous intraepithelial lesions (LSIL) (n= 66) Clinic/pathological information was obtained from patients. CRABP1 gene expression was examined by RT-PCR and CRABP1 protein by immunohistochemistry (IHC) techniques. The expression of the CRABP1 gene is shown to be significantly lower in the HSIL group (p= 0.008). CRABP1 protein was expressed in 90.3% of tissues, and only in CC was presented absence of protein (9.7%). Overweight/obesity might increase the gene (p= 0.019) but not the protein expression (p= 0.053). Also, a gene expression increase was shown in high serum retinol concentration (p= 0.047) and the presence of HVP-16 (p= 0.011) (gene expression but not the protein, p › 0.05). Menopause patients were associated with an absent/weak CRABP1 immunostaining (p= 0.008). Finally, CRABP1 and associated factors might be used as biomarkers to track the progression and persistence of cervical cancer on tissue.


REFERENCES

  1. Abu, J., Batuwangala, M., Herbert, K. & Symonds, P.(2005) Retinoic acid and retinoid receptors: potentialchemopreventive and therapeutic role in cervical cancer.Lancet Oncol., 6(9), 712–20.

  2. Aziz, S. W. & Aziz, M. H. (2017). Cervical Cancer Metastasis. InA. Ahmad (Ed.), Introduction to Cancer Metastasis. ElsevierInc. https://doi.org/10.1016/B978-0-12-804003-4.00005-0

  3. Balmer, J. E. & Blomhoff, R. (2002). Gene expression regulationby retinoic acid. J. Lipid Res., 43(11), 1773–1808. https://doi.org/10.1194/jlr.r100015-jlr200

  4. Bi, J., Hu, X., Zhou, F. C. & Wei, L. N. (2001). Upregulationof cellular retinoic acid-binding protein I expression byethanol. Dev. Growth Differ., 43(5), 553–561. https://doi.org/doi.org/10.1046/j.1440-169X.2001.00591.x

  5. Blaese, M. A., Santo-Hoeltje, L. & Rodemann, H. P. (2003).CRABP I expression and the mediation of the sensitivityof human tumour cells to retinoic acid and irradiation. Int.J. Radiat. Biol., 79(12), 981–991. https://doi.org/10.1080/09553000310001632949

  6. Celestino, R., Nome, T., Pestana, A., Hoff, A. M., Gonçalves, A.P., Pereira, L., Cavadas, B., Eloy, C., Bjøro, T., Sobrinho-Simões, M., Skotheim, R. I. & Soares, P. (2018). CRABP1,C1QL1 and LCN2 are biomarkers of differentiated thyroidcarcinoma, and predict extrathyroidal extension. BMCCancer, 18(1), 68. https://doi.org/10.1186/s12885-017-3948-3

  7. Clarke, M. A., Fetterman, B., Cheung, L. C., Wentzensen,N., Gage, J. C., Katki, H. A., Befano, B., Demarco, M.,Schussler, J., Kinney, W. K., Raine-Bennett, T. R., Lorey,T. S., Poitras, N. E., Castle, P. E. & Schiffman, M. (2018).Epidemiologic Evidence That Excess Body WeightIncreases Risk of Cervical Cancer by Decreased Detectionof Precancer. J. Clin. Oncol., 36(12), 1184–1191. https://doi.org/10.1200/JCO.2017.75.3442

  8. Darroudi, F., Bergs, J. W. J., Bezrookove, V., Buist, M. R.,Stalpers, L. J. & Franken, N. A. P. (2010). PCC andCOBRA-FISH a new tool to characterize primary cervicalcarcinomas: To assess hall-marks and stage specificity.Cancer Letters, 287(1), 67–74. https://doi.org/https://doi.org/10.1016/j.canlet.2009.05.034

  9. Enikeev, A. D., Komelkov, A. V., Axelrod, M. E., Galetsky, S.A., Kuzmichev, S. A. & Tchevkina, E. M. (2021). CRABP1and CRABP2 Protein Levels Correlate with Each Other butDo Not Correlate with Sensitivity of Breast Cancer Cellsto Retinoic Acid. Biochemistry (Mosc.), 86(2), 217–229.https://doi.org/10.1134/S0006297921020103

  10. Favorskaya, I., Kainov, Y., Chemeris, G., Komelkov, A.,Zborovskaya, I. & Tchevkina, E. (2014). Expression andclinical significance of CRABP1 and CRABP2 in nonsmallcell lung cancer. Tumour Biol., 35(10), 10295–10300.https://doi.org/10.1007/s13277-014-2348-4

  11. Hillemanns, P., Tannous-Khuri, L., Koulos, J. P., Talmage, D.& Wright, T. C. (1992). Localization of cellular retinoidbindingproteins in human cervical intraepithelial neoplasiaand invasive carcinoma. Am. J. Pathol., 141(4), 973–980.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1886642/

  12. Idres, N., Marill, J., Flexor, M. & Chabot, G. G. (2002).Activation of retinoic acid receptor-dependent transcriptionby all-trans-retinoic acid metabolites and isomers. J. Biol.Chem., 277(35), 31491–31498. https://doi.org/doi: 10.1074/jbc.M205016200

  13. Langton, S. & Gudas, L. J. (2008). CYP26A1 knockoutembryonic stem cells exhibit reduced differentiation andgrowth arrest in response to retinoic acid. Dev. Biol., 315(2),331–354. https://doi.org/doi: 10.1016/j.ydbio.2007.12.021.

  14. Lin, Y.-W., Park, S. W., Lin, Y.-L., Burton, F. H. & Wei, L.-N.(2020). Cellular retinoic acid binding protein 1 protects micefrom high-fat diet-induced obesity by decreasing adipocytehypertrophy. Int. J. Obes. (Lond.), 44(2), 466–474. https://doi.org/10.1038/s41366-019-0379-z

  15. Liu, R.-Z., Garcia, E., Glubrecht, D. D., Poon, H. Y., Mackey,J. R. & Godbout, R. (2015). CRABP1 is associated with apoor prognosis in breast cancer: adding to the complexityof breast cancer cell response to retinoic acid. Mol. Cancer,14(1), 129. https://doi.org/10.1186/s12943-015-0380-7

  16. Meyerholz, D. K. & Beck, A. P. (2018). Principles and approachesfor reproducible scoring of tissue stains in research. Lab.Invest., 98, 844–855. https://doi.org/10.1038/s41374-018-0057-0

  17. Michalaki, M. A., Vagenakis, A. G., Leonardou, A. S., Argentou,M. N., Habeos, I. G., Makri, M. G., Psyrogiannis, A. I.,Kalfarentzos, F. E. & Kyriazopoulou, V. E. (2006). Thyroidfunction in humans with morbid obesity. Thyroid, 16(1),73–78. https://doi.org/10.1089/thy.2006.16.73

  18. Miyake, T., Ueda, Y., Matsuzaki, S., Miyatake, T., Yoshino, K.,Fujita, M., Nomura, T., Enomoto, T. & Kimura, T. (2011).CRABP1-reduced expression is associated with poorerprognosis in serous and clear cell ovarian adenocarcinoma.J. Cancer Res. Clin. Oncol., 137(4), 715–722. https://doi.org/10.1007/s00432-010-0930-8

  19. Moreno-Navarrete, J. M. & Fernández-Real, J. M. (2017).Adipocyte Differentiation. In M. E. Symonds (Ed.),Adipose Tissue Biology (pp. 69–90). Springer InternationalPublishing. https://doi.org/10.1007/978-3-319-52031-5_3

  20. Muscogiuri, G., Sorice, G. P., Mezza, T., Prioletta, A., Lassandro,A. P., Pirronti, T., Casa, S. della, Pontecorvi, A. & Giaccari,A. (2013). High-normal TSH values in obesity: Is itinsulin resistance or adipose tissue’s guilt?. Obesity, 21(1),101–106. https://doi.org/10.1038/oby.2012.157

  21. Nagpal, I. & Wei, L. N. (2019). All-trans retinoic acid as aversatile cytosolic signal modulator mediated by CRABP1.Int. J. Mol. Sci., 20(15), 1–11. https://doi.org/10.3390/ijms20153610

  22. Napoli, J. L. (2017). Cellular retinoid binding-proteins, CRBP,CRABP, FABP5: Effects on retinoid metabolism, functionand related diseases. Pharmacol. Ther., 173, 19–33. https://doi.org/10.1016/j.pharmthera.2017.01.004

  23. Nautiyal, J., Christian, M. & Parker, M. G. (2013). Distinctfunctions for RIP140 in development, inflammation, andmetabolism. Trends Endocrinol. Metab., 24(9), 451–459.https://doi.org/10.1016/j.tem.2013.05.001

  24. Nhieu, J., Lin, Y.-L. & Wei, L.-N. (2022). CRABP1 in Non-Canonical Activities of Retinoic Acid in Health andDiseases. Nutrients, 14(7), 1528. https://doi.org/10.3390/nu14071528.

  25. Nishiwaki, M., Yamamoto, T., Tone, S., Murai, T., Ohkawara,T., Matsunami, T., Koizumi, M., Takagi, Y., Yamaguchi,J., Kondo, N., Nishihira, J., Horikawa, T. & Yoshiki, T.(2008). Genotyping of human papillomaviruses by a novelone-step typing method with multiplex PCR and clinicalapplications. J. Clin. Microbiol., 46(4), 1161–1168. https://doi.org/10.1128/JCM.00793-07.

  26. Park, S. W., Huang, W. H., Persaud, S. D. & Wei, L. N.(2009). RIP140 in thyroid hormone-repression andchromatin remodeling of Crabp1 gene during adipocytedifferentiation. Nucleic Acids Res., 37(21), 7085–7094.https://doi.org/10.1093/nar/gkp780

  27. Persaud, S. D., Park, S. W., Ishigami-Yuasa, M., Koyano-Nakagawa, N., Kagechika, H. & Wei, L.-N. (2016). Alltrans-retinoic acid analogs promote cancer cell apoptosisthrough non-genomic Crabp1 mediating ERK1/2phosphorylation. Sci. Rep., 6(1), 22396. https://doi.org/10.1038/srep22396

  28. Pfaffl, M. W. (2001). A new mathematical model for relativequantification in real-time RT-PCR. Nucleic Acids Res.,

  29. 29(9), 2002–2007. https://doi.org/10.1093/nar/29.9.e4529. Pfoertner, S., Goelden, U., Hansen, W., Toepfer, T., Geffers,R., Ukena, S. N., von Knobloch, R., Hofmann, R., Buer,J. & Schrader, A. J. (2005). Cellular retinoic acid bindingprotein I: Expression and functional influence in renalcell carcinoma. Tumour Biol., 26, 313–323. https://doi.org/10.1159/000089262

  30. Poorolajal, J. & Jenabi, E. (2016). The association betweenBMI and cervical cancer risk : a meta-analysis. Eur. J.Cancer Prev., 25(3), 232–238. https://doi.org/https://doi.org/10.1097/CEJ.0000000000000164

  31. Qu, W., Jiang, G., Cruz, Y., Chang, C. J., Ho, G. Y. F., Klein,R. S. & Burk, R. D. (1997). PCR detection of humanpapillomavirus: Comparison between MY09/MY11 andGP5+/GP6+ primer systems. J. Clin. Microbiol., 35(6),1304–1310. https://doi.org/10.1128/jcm.35.6.1304-1310.1997

  32. Sakata, K., Kanda, M., Shimizu, D., Nakamura, S., Inokawa,Y., Hattori, N., Hayashi, M., Tanaka, C., Nakayama, G.& Kodera, Y. (2022). Expression of cellular retinoic acidbinding protein 1 predicts peritoneal recurrence of gastriccancer. Int. J. Oncol., 60(6), 63. https://doi.org/10.3892/ijo.2022.5353

  33. Soprano, D. R. (1994). Serum and Cellular retinoid-bindingproteins. In K. Dakshinamurti (Ed.), Vitamin Receptors.Vitamins as Ligands in Cell Communication: Vol. XXXIII(Issue 2, pp. 81–87). Cambridge University Press. https://doi.org/10.1017/CBO9780511525391.003

  34. Steenbergen, R. D. M., Snijders, P. J. F., Heideman, D. A. M.& Meijer, C. J. L. M. (2014). Clinical implications of (epi)genetic changes in HPV-induced cervical precancerouslesions. Nat. Rev. Cancer, 14(6), 395–405. https://doi.org/10.1038/nrc3728

  35. Tanaka, K., Imoto, I., Inoue, J., Kozaki, K., Tsuda, H., Shimada,Y., Aiko, S., Yoshizumi, Y., Iwai, T., Kawano, T. & Inazawa,J. (2007). Frequent methylation-associated silencing ofa candidate tumor-suppressor, CRABP1, in esophagealsquamous-cell carcinoma. Oncogene, 26(44), 6456–6468.https://doi.org/10.1038/sj.onc.1210459

  36. Tannous-Khuri, L., Hillemanns, P., Rajan, N., Wright, T. C. &Talmage, D. A. (1994). Expression of Cellular RetinoicAcid-Binding Cervical Epithelium Is Stimuli DuringNormal Retinol- and Cellular Proteins in the Rat Regulatedby Endocrine Squamous Metaplasia. Am. J. Pathol., 144(1),148–159. https://pubmed.ncbi.nlm.nih.gov/8291604/

  37. The Human Protein Atlas (March, 2023a). Tissue expressionof CRABP1 Staining in cervix. The Human ProteinAtlas. https://www.proteinatlas.org/ENSG00000166426-CRABP1/tissue/cervix.

  38. The Human Protein Atlas (March, 2023b). Expression ofCRABP1 in cervical cancer .The Human Protein Atlas.https://www.proteinatlas.org/ENSG00000166426-CRABP1/pathology/cervical+cancer#ihc

  39. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C.,Oksvold, P., Mardinoglu, A., Sivertsson, Å., Kampf, C.,Sjöstedt, E., Asplund, A., Olsson, I., Edlund, K., Lundberg,E., Navani, S., Szigyarto, C. A., Odeberg, J., Djureinovic,D., Takanen, J. O., Hober, S., Alm, T., Edqvist, P.H., Berling,H., Tegel, H., Mulder, J., Rockberg, J., Nilsson, P., Schwenk,J.M., Hamsten, M., von Feilitzen, K., Forsberg, M., Persson,L., Johansson, F., Zwahlen, M., von Heijne, G., Nielsen, J.& Pontén, F. (2015). Proteomics. Tissue-based map of thehuman proteome. Science, 347(6220), 1260419. https://doi.org/10.1126/science.1260419.

  40. Uhlen, M., Zhang, C., Lee, S., Sjöstedt, E., Fagerberg, L.,Bidkhori, G., Benfeitas, R., Arif, M., Liu, Z., Edfors,F., Sanli, K., von Feilitzen, K., Oksvold, P., Lundberg,E., Hober, S., Nilsson, P., Mattsson, J., Schwenk, J. M.,Brunnström, H., Glimelius, B., Sjöblom, T., Edqvist, P.H.,Djureinovic, D., Micke, P., Lindskog, C., Mardinoglu, A.& Ponten, F. (2017). A pathology atlas of the human cancertranscriptome. Science, 357(6352), eaan2507. https://doi.org/10.1126/science.aan2507

  41. Vattai, A., Cavailles, V., Sixou, S., Beyer, S., Kuhn, C., Peryanova,M., Heidegger, H., Hermelink, K., Mayr, D., Mahner, S.,Dannecker, C., Jeschke, U. & Kost, B. (2017). Investigationof RIP140 and LCoR as independent markers for poorprognosis in cervical cancer. Oncotarget, 8(62), 105356–105371. https://doi.org/10.18632/oncotarget.22187

  42. Vogelsang, T. L. R., Schmoeckel, E., Kuhn, C., Blankenstein,T., Temelkov, M., Heidegger, H., Kolben, T. M., Kolben,T., Mahner, S., Mayr, D., Jeschke, U. & Vattai, A.(2020). Regulation of LCoR and RIP140 expression incervical intraepithelial neoplasia and correlation withCIN progression and dedifferentiation. J. Cancer Res.Clin. Oncol., 146(7), 1847–1855. https://doi.org/10.1007/s00432-020-03178-x.

  43. Wei, L. N., Lee, C. H., Filipcik, P. & Chang, L. (1997). Regulationof the mouse cellular retinoic acid-binding protein-I gene bythyroid hormone and retinoids in transgenic mouse embryosand P19 cells. J. Endocrinol., 155(1), 35–46. http://www.ncbi.nlm.nih.gov/pubmed/9390004

  44. Wei, L.-N. (2012). Chromatin remodeling and epigeneticregulation of the CrabpI gene in adipocyte differentiation.Biochim. Biophys. Acta, 1821(1), 206–212. https://doi.org/10.1016/j.bbalip.2011.03.003.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26