medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Mitochondrion: their functions, relationships with cellular organelles, cell survival and mitochondrial medicine

Olvera-Sánchez S, Gómez-Chang E, Flores-Herrera O, Martínez F
Full text How to cite this article

Language: Spanish
References: 66
Page: 1-11
PDF size: 471.50 Kb.


Key words:

Mitochondria, mitochondrial structure, mitochondrial transfer, mitochondrial cell release, mitochondrial medicine, functional cell regeneration.

ABSTRACT

For years, it was considered that the most important function of mitochondria was to provide the cell with energy in the form of ATP or even to function as a buffer of the cytosolic calcium concentration. However, it has been shown that mitochondria are a key part of signaling cascades or either, they establish shared functions with intra- and extracellular structures, allowing to maintain homeostasis and cell function. In addition, there are several reports showing that healthy cells are capable of transferring mitochondria to the bloodstream or to damaged cells with the aim of providing protection or to improve their bioenergetic condition under specific conditions. The signaling mechanisms for the recognition of marker molecules are decisive to establish the transfer of mitochondria between cells through vesicular structures or tunnels (TNT), among other systems. Currently, it has been developed strategies for mitochondrial isolation, which in turn, are injected into the tissues allowing their functional recovery, opening the door to what has been called “mitochondrial medicine” or “mitocure”. Although these findings suggest that mitochondria could be a new prophylactic method for diseases or metabolic disorders, it is also necessary to analyze mitochondrial transfer may not always be positive for the organism in certain ailments.


REFERENCES

  1. Al Amir Dache, Z., Otandault, A., Tanos, R., Pastor, B.,Meddeb, R., Sanchez, C., Arena, G., Lasorsa, L., Bennett,A., Grange, T., El Messaoudi, S., Mazard, T., Prevostel, C.& Thierry, A. R. (2020). Blood contains circulating cellfreerespiratory competent mitochondria. FASEB Journal,34(3), 3616–3630. https://doi.org/10.1096/fj.201901917RR

  2. Ali Pour, P., Hosseinian, S. & Kheradvar, A. (2021).Mitochondrial transplantation in cardiomyocytes:foundation, methods, and outcomes. American Journal ofPhysiology. Cell Physiology, 321(3), C489–C503. https://doi.org/10.1152/ajpcell.00152.2021

  3. Bassi, G., Sidhu, S. K. & Mishra, S. (2021). The expanding role ofmitochondria, autophagy and lipophagy in steroidogenesis.Cells, 10(8), 1851. https://doi.org/10.3390/cells10081851

  4. Bevers, E. M. & Williamson, P. L. (2016). Getting to the outerleaflet: physiology of phosphatidylserine exposure at theplasma membrane. Physiological Reviews, 96(2), 605–645.https://doi.org/10.1152/physrev.00020.2015

  5. Bhatti, J. S., Bhatti, G. K. & Reddy, P. H. (2017). Mitochondrialdysfunction and oxidative stress in metabolic disorders - Astep towards mitochondria based therapeutic strategies.Biochimica Et Biophysica Acta. Molecular Basis ofDisease, 1863(5), 1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

  6. Burt, R., Dey, A., Aref, S., Aguiar, M., Akarca, A., Bailey, K.,Day, W., Hooper, S., Kirkwood, A., Kirschner, K., Lee, S.W., Lo Celso, C., Manji, J., Mansour, M. R., Marafioti, T.,Mitchell, R. J., Muirhead, R. C., Cheuk Yan Ng, K., Pospori,C., Puccio, I., Zuborne-Alapi, K., Sahai, E.& Fielding A.K. (2019). Activated stromal cells transfer mitochondria torescue acute lymphoblastic leukemia cells from oxidativestress. Blood, 134(17), 1415–1429. https://doi.org/10.1182/blood.2019001398

  7. Caicedo, A., Zambrano, K., Sanon, S. & Gavilanes, A. W. D.(2021). Extracellular mitochondria in the cerebrospinalfluid (CSF): Potential types and key roles in central nervoussystem (CNS) physiology and pathogenesis. Mitochondrion,58, 255–269. https://doi.org/10.1016/j.mito.2021.02.006

  8. Chan, D. C. (2020). Mitochondrial Dynamics and Its Involvementin Disease. Annual Review of Pathology, 15, 235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711

  9. Chen, J., Zhong, J., Wang, L. L. & Chen, Y. Y. (2021).Mitochondrial transfer in cardiovascular disease: Frommechanisms to therapeutic implications. Frontiersin Cardiovascular Medicine, 8, 771298. https://doi.org/10.3389/fcvm.2021.771298

  10. de Rooij, B., Polak, R., Stalpers, F., Pieters, R. & den Boer, M.L. (2017). Tunneling nanotubes facilitate autophagosometransfer in the leukemic niche. Leukemia, 31(7), 1651–1654.https://doi.org/10.1038/leu.2017.117

  11. Emani, S. M., Piekarski, B. L., Harrild, D., Del Nido, P. J.& McCully, J. D. (2017). Autologous mitochondrialtransplantation for dysfunction after ischemia-reperfusioninjury. The Journal of Thoracic and CardiovascularSurgery, 154(1), 286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018

  12. Esch, T., Stefano, G. B., Ptacek, R. & Kream, R. M. (2020).Emerging Roles of Blood-Borne Intact and RespiringMitochondria as Bidirectional Mediators of Pro- andAnti-Inflammatory Processes. Medical Science Monitor:International Medical Journal of Experimental andClinical Research, 26, e924337. https://doi.org/10.12659/MSM.924337

  13. Feng, Y., Zhu, R., Shen, J., Wu, J., Lu, W., Zhang, J., Zhang, J.& Liu, K. (2019). Human bone marrow mesenchymal stemcells rescue endothelial cells experiencing chemotherapystress by mitochondrial transfer via tunneling nanotubes.Stem Cells and Development, 28(10), 674–682. https://doi.org/10.1089/scd.2018.0248

  14. Finsterer, J. (2004). Mitochondriopathies. European Journal ofNeurology, 11(3), 163–186. https://doi.org/10.1046/j.1351-5101.2003.00728.x

  15. Glancy, B. (2020). Visualizing mitochondrial form and functionwithin the cell. Trends in Molecular Medicine, 26(1), 58–70.https://doi.org/10.1016/j.molmed.2019.09.009

  16. Gollihue, J. L. & Rabchevsky, A. G. (2017). Prospects fortherapeutic mitochondrial transplantation. Mitochondrion,35, 70–79. https://doi.org/10.1016/j.mito.2017.05.007

  17. Gollihue, J. L., Patel, S. P., Mashburn, C., Eldahan, K.C., Sullivan, P. G. & Rabchevsky, A. G. (2017).Optimization of mitochondrial isolation techniquesfor intraspinal transplantation procedures. Journal ofNeuroscience Methods, 287, 1–12. https://doi.org/10.1016/j.jneumeth.2017.05.023

  18. Gordaliza-Alaguero, I., Cantó, C. & Zorzano, A. (2019).Metabolic implications of organelle-mitochondriacommunication. EMBO Reports, 20(9), e47928. https://doi.org/10.15252/embr.201947928

  19. Guariento, A., Piekarski, B. L., Doulamis, I. P., Blitzer, D.,Ferraro, A. M., Harrild, D. M., Zurakowski, D., Del Nido,P. J., McCully, J. D. & Emani, S. M. (2021). Autologousmitochondrial transplantation for cardiogenic shock inpediatric patients following ischemia-reperfusion injury. TheJournal of Thoracic and Cardiovascular Surgery, 162(3),992–1001. https://doi.org/10.1016/j.jtcvs.2020.10.151

  20. Han, D., Zheng, X., Wang, X., Jin, T., Cui, L. & Chen, Z. (2020).Mesenchymal stem/stromal cell-mediated mitochondrialtransfer and the therapeutic potential in treatment ofneurological diseases. Stem Cells International, 2020,8838046. https://doi.org/10.1155/2020/8838046

  21. Han, H., Hu, J., Yan, Q., Zhu, J., Zhu, Z., Chen, Y., Sun, J. &Zhang, R. (2016). Bone marrow-derived mesenchymalstem cells rescue injured H9c2 cells via transferring intactmitochondria through tunneling nanotubes in an in vitrosimulated ischemia/reperfusion model. Molecular MedicineReports, 13(2), 1517–1524. https://doi.org/10.3892/mmr.2015.4726

  22. Hayashida, K., Takegawa, R., Shoaib, M., Aoki, T., Choudhary,R. C., Kuschner, C. E., Nishikimi, M., Miyara, S. J., Rolston,D. M., Guevara, S., Kim, J., Shinozaki, K., Molmenti, E.P. & Becker, L. B. (2021). Mitochondrial transplantationtherapy for ischemia reperfusion injury: a systematic reviewof animal and human studies. Journal of TranslationalMedicine, 19(1), 214. https://doi.org/10.1186/s12967-021-02878-3

  23. Herst, P. M., Dawson, R. H. & Berridge, M. V. (2018).Intercellular communication in tumor biology: A role formitochondrial transfer. Frontiers in Oncology, 8, 344.https://doi.org/10.3389/fonc.2018.00344

  24. Herst, P. M., Rowe, M. R., Carson, G. M. & Berridge, M. V.(2017). Functional Mitochondria in Health and Disease.Frontiers in Endocrinology, 8, 296. https://doi.org/10.3389/fendo.2017.00296

  25. Hosseinian, S., Ali Pour, P. & Kheradvar, A. (2022). Prospectsof mitochondrial transplantation in clinical medicine:Aspirations and challenges. Mitochondrion, 65, 33–44.https://doi.org/10.1016/j.mito.2022.04.006

  26. Javadov, S., Kozlov, A. V. & Camara, A. K. S. (2020).Mitochondria in Health and Diseases. Cells, 9(5), 1177.https://doi.org/10.3390/cells9051177

  27. Jiang, D., Gao, F., Zhang, Y., Wong, D. S., Li, Q., Tse, H.F., Xu, G., Yu, Z. & Lian, Q. (2016). Mitochondrialtransfer of mesenchymal stem cells effectively protectscorneal epithelial cells from mitochondrial damage. CellDeath & Disease, 7(11), e2467. https://doi.org/10.1038/cddis.2016.358

  28. Kitani, T., Kami, D., Kawasaki, T., Nakata, M., Matoba, S.& Gojo, S. (2014). Direct human mitochondrial transfer:a novel concept based on the endosymbiotic theory.Transplantation Proceedings, 46(4), 1233–1236. https://doi.org/10.1016/j.transproceed.2013.11.133

  29. Li, C., Cheung, M., Han, S., Zhang, Z., Chen, L., Chen, J., Zeng,H. & Qiu, J. (2019). Mesenchymal stem cells and theirmitochondrial transfer: a double-edged sword. BioscienceReports, 39(5), BSR20182417. https://doi.org/10.1042/BSR20182417

  30. Liskova, A., Samec, M., Koklesova, L., Kudela, E., Kubatka,P. & Golubnitschaja, O. (2021). Mitochondriopathiesas a Clue to Systemic Disorders-Analytical Tools andMitigating Measures in Context of Predictive, Preventive,and Personalized (3P) Medicine. International Journal ofMolecular Sciences, 22(4), 2007. https://doi.org/10.3390/ijms22042007

  31. Liu, K., Ji, K., Guo, L., Wu, W., Lu, H., Shan, P. & Yan, C.(2014). Mesenchymal stem cells rescue injured endothelialcells in an in vitro ischemia-reperfusion model viatunneling nanotube like structure-mediated mitochondrialtransfer. Microvascular Research, 92, 10–18. https://doi.org/10.1016/j.mvr.2014.01.008

  32. Liu, Z., Sun, Y., Qi, Z., Cao, L. & Ding, S. (2022). Mitochondrialtransfer/transplantation: an emerging therapeutic approachfor multiple diseases. Cell & Bioscience, 12(1), 66. https://doi.org/10.1186/s13578-022-00805-7

  33. López-Crisosto, C., Bravo-Sagua, R., Rodriguez-Peña, M.,Mera, C., Castro, P. F., Quest, A. F., Rothermel, B. A.,Cifuentes, M. & Lavandero, S. (2015). ER-to-mitochondriamiscommunication and metabolic diseases. Biochimica etBiophysica Acta, 1852(10 Pt A), 2096–2105. https://doi.org/10.1016/j.bbadis.2015.07.011

  34. Luchetti, F., Carloni, S., Nasoni, M. G., Reiter, R. J. & Balduini,W. (2022). Tunneling nanotubes and mesenchymal stemcells: New insights into the role of melatonin in neuronalrecovery. Journal of Pineal Research,73(1), e12800. https://doi.org/10.1111/jpi.12800

  35. Luconi, M., Cantini, G., Baldi, E. & Forti, G. (2011). Role ofa-kinase anchoring proteins (AKAPs) in reproduction.Frontiers in Bioscience (Landmark edition), 16(4), 1315–1330. https://doi.org/10.2741/3791

  36. Marin, W. (2020). A-kinase anchoring protein 1 (AKAP1)and its role in some cardiovascular diseases. Journal ofMolecular and Cellular Cardiology, 138, 99–109. https://doi.org/10.1016/j.yjmcc.2019.11.154

  37. Marlein, C. R., Piddock, R. E., Mistry, J. J., Zaitseva, L.,Hellmich, C., Horton, R. H., Zhou, Z., Auger, M. J.,Bowles, K. M. & Rushworth, S. A. (2019). CD38-drivenmitochondrial trafficking promotes bioenergetic plasticityin multiple myeloma. Cancer Research, 79(9), 2285–2297.https://doi.org/10.1158/0008-5472.CAN-18-0773

  38. Marlein, C. R., Zaitseva, L., Piddock, R. E., Robinson, S. D.,Edwards, D. R., Shafat, M. S., Zhou, Z., Lawes, M., Bowles,K. M. & Rushworth, S. A. (2017). NADPH oxidase-2derived superoxide drives mitochondrial transfer from bonemarrow stromal cells to leukemic blasts. Blood, 130(14),1649–1660. https://doi.org/10.1182/blood-2017-03-772939

  39. Martínez Montes, F., Pardo Vázquez, J. P. & Riveros Rosas, H.(2018). Bioquímica de Laguna y Piña. Ciudad de México:Manual Moderno. ISBN 9786073004411 (impreso). ISBN9786073005210 (electrónico).

  40. Martinez, F., Olvera-Sanchez, S., Esparza-Perusquia, M.,Gomez-Chang, E. & Flores-Herrera, O. (2015). Multiplefunctions of syncytiotrophoblast mitochondria. Steroids,103, 11–22. https://doi.org/10.1016/j.steroids.2015.09.006

  41. McCully, J. D., del Nido, P. J. & Emani, S. M. (2022).Therapeutic mitochondrial transplantation, Current Opinionin Physiology, (2022); 27:100558, https://doi.org/10.1016/j.cophys.2022.100558.

  42. McLean, J. R., Cohn, G. L., Brandt, I. K. & Simpson, M. V.(1958). Incorporation of labeled amino acids into theprotein of muscle and liver mitochondria. The Journalof Biological Chemistry, 233(3), 657–663. https://doi.org/10.1016/S0021-9258(18)64722-2

  43. Merrill, R. A. & Strack, S. (2014). Mitochondria: a kinaseanchoring protein 1, a signaling platform for mitochondrialform and function. The International Journal ofBiochemistry & Cell Biology, 48, 92–96. https://doi.org/10.1016/j.biocel.2013.12.012

  44. Mohammadalipour, A., Dumbali, S. P. & Wenzel, P. L. (2020).Mitochondrial transfer and regulators of mesenchymalstromal cell function and therapeutic efficacy. Frontiers inCell and Developmental Biology, 8, 603292. https://doi.org/10.3389/fcell.2020.603292

  45. Mokhtari, B., Yavari, R., Badalzadeh, R. & Mahmoodpoor, A.(2022). An Overview on mitochondrial-based therapiesin sepsis-related myocardial dysfunction: mitochondrialtransplantation as a promising approach. The CanadianJournal of Infectious Diseases & Medical Microbiology,2022, 3277274. https://doi.org/10.1155/2022/3277274

  46. Nass, S. & Nass, M. M. (1963). Intramitochondrial fibers withDNA characteristics. II. Enzymatic and other hydrolytictreatments. The Journal of Cell Biology, 19(3), 613–629.https://doi.org/10.1083/jcb.19.3.613

  47. Nicholls, D. G. & Ferguson, S. J. (2013). Bioenergetics. SanDiego: Academic Press, Elsevier. ISBN: 9780123884251(Paperback). ISBN: 9780123884312 (eBook).Paliwal, S., Chaudhuri, R., Agrawal, A. & Mohanty, S. (2018a).Human tissue-specific MSCs demonstrate differentialmitochondria transfer abilities that may determine theirregenerative abilities. Stem Cell Research & Therapy, 9(1),298. https://doi.org/10.1186/s13287-018-1012-0

  48. Paliwal, S., Chaudhuri, R., Agrawal, A. & Mohanty, S. (2018b).Regenerative abilities of mesenchymal stem cells throughmitochondrial transfer. Journal of Biomedical Science,25(1), 31. https://doi.org/10.1186/s12929-018-0429-1

  49. Plotnikov, E. Y., Khryapenkova, T. G., Galkina, S. I., Sukhikh,G. T. & Zorov, D. B. (2010). Cytoplasm and organelletransfer between mesenchymal multipotent stromal cellsand renal tubular cells in co-culture. Experimental CellResearch, 316(15), 2447–2455. https://doi.org/10.1016/j.yexcr.2010.06.009

  50. Qin, Y., Jiang, X., Yang, Q., Zhao, J., Zhou, Q. & Zhou, Y. (2021).The functions, methods, and mobility of mitochondrialtransfer between cells. Frontiers in Oncology, 11, 672781.https://doi.org/10.3389/fonc.2021.672781

  51. Riley, J. S. & Tait, S. W. (2020). Mitochondrial DNA ininflammation and immunity. EMBO Reports, 21(4), e49799.https://doi.org/10.15252/embr.201949799

  52. Rodriguez, A. M., Nakhle, J., Griessinger, E. & Vignais, M. L.(2018). Intercellular mitochondria trafficking highlightingthe dual role of mesenchymal stem cells as both sensorsand rescuers of tissue injury. Cell Cycle (Georgetown,Tex.), 17(6), 712–721. https://doi.org/10.1080/15384101.2018.1445906

  53. Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.H. (2004). Nanotubular highways for intercellular organelletransport. Science, 303(5660), 1007–1010. https://doi.org/10.1126/science.1093133

  54. Sahinbegovic, H., Jelinek, T., Hrdinka, M., Bago, J. R., Turi,M., Sevcikova, T., Kurtovic-Kozaric, A., Hajek, R. &Simicek, M. (2020). Intercellular mitochondrial transferin the tumor microenvironment. Cancers, 12(7), 1787.https://doi.org/10.3390/cancers12071787

  55. Scheffler, I. E., (2007). Mitochondria, 2ed. A John Wiley &Sons, Inc., Publication, ISBN 978-0-470-04073-7, 2008.Segawa, K. & Nagata, S. (2015). An apoptotic ‘Eat Me’ signal:Phosphatidylserine exposure. Trends in Cell Biology, 25(11),639–650. https://doi.org/10.1016/j.tcb.2015.08.003

  56. Song, X., Hu, W., Yu, H., Wang, H., Zhao, Y., Korngold, R. &Zhao, Y. (2020). Existence of circulating mitochondria inhuman and animal peripheral blood. International Journalof Molecular Sciences, 21(6), 2122. https://doi.org/10.3390/ijms21062122

  57. Stephens, O. R., Grant, D., Frimel, M., Wanner, N., Yin,M., Willard, B., Erzurum, S. C. & Asosingh, K. (2020).Characterization and origins of cell-free mitochondriain healthy murine and human blood. Mitochondrion, 54,102–112. https://doi.org/10.1016/j.mito.2020.08.002

  58. Stier, A. (2021). Human blood contains circulating cellfreemitochondria, but are they really functional?American journal of physiology. Endocrinology andMetabolism, 320(5), E859–E863. https://doi.org/10.1152/ajpendo.00054.2021

  59. Thorsness, P. E. & Weber, E. R. (1996). Escape and migration ofnucleic acids between chloroplasts, mitochondria, and thenucleus. International Review of Cytology, 165, 207–234.https://doi.org/10.1016/s0074-7696(08)62223-8

  60. Tyler, D. (2010). The Mitochondrion in Health and Disease.New York: VCH. https://doi.org/10.1002/cbf.290110411

  61. van der Bliek, A. M., Sedensky, M. M. & Morgan, P. G. (2017).Cell biology of the mitochondrion. Genetics, 207(3),843–871. https://doi.org/10.1534/genetics.117.300262

  62. van der Vlist, M., Raoof, R., Willemen, H., Prado, J., Versteeg,S., Martin Gil, C., Vos, M., Lokhorst, R. E., Pasterkamp,R. J., Kojima, T., Karasuyama, H., Khoury-Hanold, W.,Meyaard, L. & Eijkelkamp, N. (2022). Macrophages transfermitochondria to sensory neurons to resolve inflammatorypain. Neuron, 110(4), 613–626.e9. https://doi.org/10.1016/j.neuron.2021.11.020

  63. Yin, M. & O’Neill, L. (2021). The role of the electron transportchain in immunity. FASEB Journal, 35(12), e21974. https://doi.org/10.1096/fj.202101161R

  64. Zhang, F., Zhang, L., Qi, Y. & Xu, H. (2016). MitochondrialcAMP signaling. Cellular and Molecular Life Sciences,73(24), 4577–4590. https://doi.org/10.1007/s00018-016-2282-2

  65. Zhang, Y., Yu, Z., Jiang, D., Liang, X., Liao, S., Zhang, Z., Yue,W., Li, X., Chiu, S. M., Chai, Y. H., Liang, Y., Chow, Y.,Han, S., Xu, A., Tse, H. F. & Lian, Q. (2016). iPSC-MSCswith high intrinsic MIRO1 and sensitivity to TNF-α yieldefficacious mitochondrial transfer to rescue anthracyclineinducedcardiomyopathy. Stem Cell Reports, 7(4), 749–763.https://doi.org/10.1016/j.stemcr.2016.08.009

  66. Zhou, M., Yu, Y., Luo, Y., Luo, X., Zhang, Y., Zhou, X., Hu,Y. & Jian, W. (2022). Mitochondrial transplantation: Aunique treatment strategy. Journal of CardiovascularPharmacology, 79(6), 759–768. https://doi.org/10.1097/FJC.0000000000001247




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26