medigraphic.com
SPANISH

Revista Información Científica

ISSN 1028-9933 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 2

<< Back Next >>

RIC 2022; 101 (2)

Potassium ion channels in Camphenol Plus-induced arterial smooth muscle contractile dynamics

Rodríguez-Reyes O, Patejdl R, Noack TK, Bosch-Nuñez AI
Full text How to cite this article

Language: Spanish
References: 15
Page: 1-11
PDF size: 829.80 Kb.


Key words:

vascular smooth muscle, muscle tension, vasodilatation, organ bath, intracanal medication, potassium ions, Camphenol Plus.

ABSTRACT

Introduction: Camphenol Plus is a chlorophenolic derivative commonly used as an intra - duct medication for pulporadicular treatments in Dentistry. Scientific reports about the use of this medication on the role of potassium ion channels in the contractile dynamics of induced arterial smooth muscle are low.
Objective: To determine the role of potassium ion channels in the contractile dynamics of Camphenol Plus - induced arterial smooth muscle.
Method: A preclinical experimental investigation was performed at the "Oscar Langerdorff" Institute of Physiology, Rostock University Medical Center, Rostock, Germany, between October and December 2018. A total of 30 aortic rings obtained from 10 Wistar rats (n=10) were used. The biological preparations were placed in an organ bath and preactivated with Krebs solution concentrated in potassium ions, afterwards it was recorded the tension developed by the vascular smooth muscle after applying the Camphenol Plus solutions in different time intervals. The Mann-Whitney U test and Wilcoxon test were applied.
Results: The 31.4% of vascular smooth muscle was relaxed by the effect of Camphenol Plus after preactivation with Krebs solution concentrated in potassium ions. The greatest decrease in vascular tone occurred between the first and third minutes after the use of the drug solutions prepared at 7 %.
Conclusions: The in vitro vasorelaxant effect produced by the Camphenol Plus medication on arterial smooth muscle is mediated by the potassium ion channels sensitive to voltage, calcium and the adenosine triphosphate of the vascular endothelium and sarcolemma.


REFERENCES

  1. Kumar A, Tamanna S, Iftekhar H. Intracanal medicaments - their use in modern endodontics: A narrative review. J Oral Res Rev [Internet]. 2019 [citado 29/07/2021]; 11:89-94. Disponible en: http://www.jorr.org/article.asp?issn=2249-4987;year=2019;volume=11;issue=2;spage=94;epage=99;aulast=Kumar

  2. Canalda C. Medicación intraconducto. En: Canalda C, Brau E. Endodoncia. Técnicas clínicas y Bases científicas. 4ed. España: Editorial Masson; 2019. Disponible en: https://booksmedicos.org/endodoncia-tecnicas-clinicas-y-bases-cientificas/#more-139329

  3. Abd Gami A, Yunus Shukor M, Abdul Khalil K, Aini Dahalan F, Khalid A, Aqlima Ahmad S. Phenol and its toxicity. J Env Microbiol Toxicol (JEMT) [Internet]. 2014 [citado 16/06/2021]; 2(1):[aproximadamente 13 p.]. Disponible en: https://echa.europa.eu/documents/10162/06b44bac-d140-b256-5c6c-c1f295f084b4

  4. Ambikathanaya UK. Intracanal antiseptic medications; a review. UJMDS [Internet]. 2014 [citado 16/06/2021]; 2(3):[aproximadmente 6 p.]. Disponible en: https://www.researchgate.net/publication/308916130_Unique_Journal_of_Medical_and_Dental_Sciences_INTRACANAL_ANTISEPTIC_MEDICATIONS_A_REVIEW

  5. Tingting G, Jiangyuan H, Yongmei Q, Xueyan G, Lin M, Cheng Z, et al. The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicol J (ATJ) [Internet]. 2017 [citado 12/09/2021]; 184:78-93. Doi: https://doi.org/10.1016/j.aquatox.2017.01.005

  6. Rodríguez Reyes O, Noack T, Patejdl R, García Rodríguez RE, Cortés Camacho AA. Efecto del Camphenol Plus sobre el músculo liso vascular de vena porta en ratas Wistar. Rev Ciencias Méd [Internet]. 2021 [citado 27/08/2021]; 25(3):e5007. Disponible en: http://revcmpinar.sld.cu/index.php/publicaciones/article/view/5007

  7. Syed AU, Thanhmai L, Navedo MF, Nieves-Cintrón M. Canales iónicos y su regulación. En: Fátima Shad K. Comprensión básica y clínica de la microcirculación [Internet]. Reino Unido: Intech Open; 2019 [citado 05/09/2021]. Disponible en: https://www.intechopen.com/online-first/ion-channels-and-their-regulation-in-vascular-smooth-muscle

  8. Bergantin LB. The Control of Vascular Smooth Muscle Tone: Concepts Coming from Ca2+ and cAMP Signalling. J Thrombo Cir [Internet]. 2018 [citado 05/09/2021]; 4:1000e111. DOI: http://doi.org/10.4172/2572-9462.1000e111

  9. Aiello EA. Canales de potasio y calcio en el músculo liso vascular. En: Gómez Llambí H. Hipertensión arterial, epidemiología, fisiología, fisiopatología, diagnóstico y terapéutica [Internet]. Argentina: Buenos Aires Inter-Médica; 2013 [citado 15/10/2021]. Disponible en: http://www.saha.org.ar/pdf/libro/Cap.019.pdf

  10. Fatith Dogan M, Yildiz O, Oktay Arslan S, Gokhan Ulusoy K. Canales de potasio en el músculo liso vascular: una perspectiva fisiopatológica y farmacológica. Farmacol Fund Clín [Internet]. 2019 [citado 05/10/2021]; 33(5):504-23. DOI: https://doi.org/10.1111/fcp.12461

  11. Cantú SM, Lee HJ, Donoso A, Puyó AM, Peredo HA. El ácido araquidónico y sus derivados: generalidades de los prostanoides en relación con procesos inflamatorios. Ciencia e Inv [Internet]. 2017 [citado 01/04/2021]; 67(4):[aproximadamente 8 p.]. Disponible en: http://aargentinapciencias.org/wp-content/uploads/2018/01/RevistasCeI/tomo67-4/1-cei67-4-2.pdf

  12. Prieto Ocejo D, García Sacristán A. Citocromo P450 y función vascular. En: Monografías: Citocromo P450 [Internet]. España: Real Academia Nacional de Farmacia; 2004 [citado 26/12/2021]. Disponible en: https://pdfs.semanticscholar.org/bf56/f4d7faf29ec0000fcd2b74715340233b9abc.pdf

  13. Fernández Agudelo S, Zeledón Corrales N, Rojas Jara A. Rol del óxido nítrico en la fisiopatología del ictus cerebral. Rev Méd Sinergia [Internet]. 2020 [citado 14/05/2021]; 5(1):e339. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/download/339/707?inline=1

  14. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Disfunción endotelial y enfermedad vascular: actualización del 30 aniversario. Acta Physiol (buey) [Internet]. 2017 [citado 14/05/2021]; 219(1):22-96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26706498/

  15. Paredes Carbajal MC, Ramírez Rosas E, Cervantes Hernández I, Verdugo Díaz L, Torres Durán PV, Juárez Oropeza MA. Relación entre la disfunción endotelial y el estrés mental. Rev Educ Bioq (REB) [Internet]. 2020 [citado 17/05/2021]; 39(1):3-13. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=93155




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

RIC. 2022;101