medigraphic.com
SPANISH

Medicentro

ISSN 1029-3043 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Medicentro 2022; 26 (3)

Effect of zinc supplementation on fetal weight in pregnant diabetic rats

Castellón GD, García RM, Bequer ML, Freire GC, Molina MJL, Bermúdez PA, Gómez HT
Full text How to cite this article

Language: Spanish
References: 32
Page: 598-613
PDF size: 649.75 Kb.


Key words:

fetal weight, diabetes mellitus, experimental, zinc deficiency.

ABSTRACT

Introduction: the relationship between Zn deficiency and the high incidence of abnormal intrauterine growth in maternal diabetes has not yet been elucidated. There are no reports in the consulted literature of the effect of micronutrient supplementation on fetal growth in models of diabetes with moderate hyperglycemia.
Objective: to determine the effect of zinc supplementation on fetal weight in rats with moderate diabetes during pregnancy.
Methods: a model of mild diabetes was used in Wistar rats on the second day of birth by subcutaneous streptozotocin induction (100mg/kg-bw). As adults, healthy and diabetic rats were mated with healthy males. As appropriate, they received a zinc sulfate supplement (50mg/kg) during 20 days of gestation. A number of 395 fetuses from four groups were studied: fetuses from healthy rats without supplementation, from healthy rats supplemented, from diabetic rats without supplementation and from diabetic rats supplemented. Fetuses were classified as small (SGA), adequate (AGA), and large (LGA) for gestational age.
Results: the offspring of the supplemented diabetic rats showed similar fetal weight values to both healthy groups at the end of pregnancy, having a lower percentage of SGA and LGA fetuses, as well as a higher percentage of AGA compared to the non-supplemented diabetic group.
Conclusions: Zn supplementation during pregnancy in diabetic rats with moderate hyperglycemia had positive effects on their offspring by increasing the percentage of fetuses with adequate weight.


REFERENCES

  1. ADA. American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes. Diabetes Care [internet]. 2021 [citado 3 ene. 2021];44(Suppl 1):[aprox. 18 p.]. Disponible en: https://diabetesjournals.org/care/article/44/Supplement_1/S15/30859/2-Classification-and-Diagnosis-of-Diabetes1.

  2. ALAD. Guías ALAD sobre el diagnóstico, control y tratamiento de la diabetes mellitus tipo 2 con medicina basada en evidencia Edición 2019. Rev ALAD [internet]. 2019 [citado 3 ene. 2020]:[aprox. 25 p.]. Disponible en: https://www.google.com/search?q=Guías+ALAD+sobre+el+diagnóstico%2C+control+y+tratamiento+de+la+diabetes+mellitus+tipo+2+con+medicina+basada+en+evidencia+2.

  3. Cabero L, González NL. Diabetes y Embarazo. España: Sociedad Española de Ginecología y Obstetricia; 2016. p. 38. [ Links ]

  4. Kelstrup L, Bytoft B, Hjort L, Houshmand-Oeregaard A, Mathiesen E, Damm P. Diabetes in pregnancy. In: Lapolla A, Metzger BE. Gestational diabetes. 28 th ed. New York: Basel, Karger; 2020. p. 201-22. [ Links ]

  5. Jean-Baptiste A, Simeoni U. Offspring of mothers with hyperglycemia in pregnancy: Short-term consequences for newborns and infants. In: Lapolla A, Metzger BE. Gestational diabetes. New York: Basel, Karger; 2020. p. 194-200. [ Links ]

  6. MINSAP. Ministerio de Salud Pública de Cuba. Dirección de Registros Médicos y Estadísticas de Salud. Anuario estadístico de salud 2019. La Habana: Ministerio de Salud Pública; 2020. Available from: http://bvscuba.sld.cu/anuario-estadistico-de-cuba/6.

  7. Cunningham FG, Leveno KL, Bloom SL, Spong CY, Dashe J, Hoffman BL. Williams Obstetrics. 25th ed. United States: McGraw-Hill Education; 2018. p. 13-44. [ Links ]

  8. Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Research [interet]. 2015 [citado 5 abr. 2020];105:[aprox. 40 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25783684/8.

  9. Çelikel OO, Dogan O, Aksoy N. A multilateral investigation of the effects of zinc level on pregnancy. J Clin Lab Anal [internet]. 2018 [citado 4 abr. 2020];32(5):[aprox. 5 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29392763/9.

  10. Fukunaka A, Fujitani Y. Role of zinc homeostasis in the pathogenesis of diabetes and obesity. International Journal Molecular Science [internet]. 2018 [citado 4 abr. 2020];19(476):[aprox. 15 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855698/10.

  11. Poudel RR, Bhusal Y, Tharu B, Kafle NK. Role of zinc in insulin regulation and diabetes. J Soc Health Diabetes [internet]. 2017 [citado 4 abr. 2020];5:[aprox. 4 p.]. Disponible en: https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0038-1676241.pdf11.

  12. Gómez T, Bequer L, Mollineda A, Molina JL, Álvarez A, Lavastida M, et al. Concentration of zinc, copper, iron, calcium and magnesium in the serum, tissues and urine of streptozotocin-induced mild-diabetic rat model. Biol Trace Elem Res [internet]. 2017 [citado 5 abr. 2020];(179):[aprox. 9 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28258359/12.

  13. Gómez T, Bequer L, Molineda A, Molina JL, Álvarez A, Lavastida M, et al. Beneficios de la suplementación con zinc sobre el estado metabólico, redox y de elementos traza en un modelo de diabetes moderada en ratas. J Pharm Pharmacogn Res [internet]. 2019 [citado 5 abr. 2020];7(2):[aprox. 9 p.]. Disponible en: https://jppres.com/jppres/pdf/vol7/jppres18.515_7.2.144.pdf13.

  14. Bequer L, Gómez T, Molina JL, Artiles D, Bermúdez R, Clapés S. Acción diabetogénica de la estreptozotocina en un modelo experimental de inducción neonatal. Biomédica [internet]. 2016 [citado 5 abr. 2020];26(2):[aprox. 8 p.]. Disponible en: http://dx.doi.org/10.7705/biomedica.v36i2.268614.

  15. Bequer L, Gómez T, Molina J, López F, Gómez C, Clapés S. Inducción de hiperglicemias moderadas en ratas wistar por inoculación neonatal de estreptozotocina. ¿Inyección subcutánea o intraperitoneal? Rev Argent Endocrinol Metab [internet]. 2014 [citado 5 abr. 2020];51(4):[aprox. 6 p.]. https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-3034201400040000215.

  16. Gómez T, Bequer L, Sánchez C, de la Barca M, Muro I, Reyes MA, et al. Inducción neonatal de hiperglucemias moderadas: indicadores metabólicos y de estrés oxidativo en ratas adultas. Rev ALAD [internet]. 2014 [citado 5 abr. 2020];4(4):[aprox. 9 p.]. Disponible en: https://www.researchgate.net/publication/275274525_16.

  17. Portha B, Levacher C, Picon L, Rosselin G. Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes [internet]. 1974 [citado 5 abr. 2020];23(11):[aprox. 6 p.]. Disponible en: http://pubget.com/paper/427919417.

  18. Soulimane-Moktari N, Guermouche B, Yessoufou A, Saker M, Moutairou K, Hichami A. Modulation of lipid metabolism by n-3 polyunsaturated fatty acids in gestational diabetic rats and their macrosomic offspring. Clin Sci [internet]. 2005 [citado 5 abr. 2020];109(3):[aprox. 8 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15898958/18.

  19. Bequer L, Gómez T, Molina J, Álvarez A, Chaviano C, Clapés S. Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Syst Biol Reprod Med [internet]. 2018 [citado 5 abr. 2020];64(1):[aprox. 7 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29156994/19.

  20. National Institute of Health. Guide for the Care and Use of Laboratory Animals [internet]. Washington (DC): National Academies Press; 2011. Disponible en : http://www.ncbi.nlm.nih.gov/books/NBK54050/?report=reader [ Links ]

  21. Saito FH, Damasceno DC, Dallaqua B, Moreno I, Rudge MVC, De Mattos I. Heat shock protein production and immunity and altered fetal development in diabetic pregnant rats. Cell Stress Chaperones [internet]. 2013 [citado 5 abr. 2020];18(1):[aprox. 8 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508127/21.

  22. Iessi IL, Bueno A, Sinzato YK, Taylor KN, Rudge MV, Damasceno DC. Evaluation of neonatally-induced mild diabetes in rats: Maternal and fetal repercussions. Diabetol Metab Syndr [internet]. 2010 [citado 5 abr. 2020];2(37):[aprox. 6 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20529353/22.

  23. Elizabeth KE, Ashwin DA, Sobhakumar S, Sujatha TL. Outcome of large- and small-for-gestational-age babies born to mothers with pre-pregnancy and gestational diabetes mellitus versus without diabetes mellitus. Indian J Child Health [internet]. 2018 [citado 5 abr. 2020];5(9):[aprox. 4 p.]. Disponible en: https://mansapublishers.com/IJCH/article/view/114023.

  24. Wentzel P, Eriksson U. Embryopathy and diabetes. In: Lapolla A, Metzger BE. Gestational diabetes. New York: Basel, Karger; 2020. p. 132-44. [ Links ]

  25. Jawerbaum A, White V. Review on intrauterine programming: Consequences in rodent models of mild diabetes and mild fat overfeeding are not mild. Placenta [internet]. 2017 [citado 5 abr. 2020];52:[aprox. 11 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28454694/25.

  26. Zabihi S, Loeken MR. Understanding diabetic teratogenesis: Where are we now and where are we going?. Birth Defects Res Clin Mol Teratol [internet]. 2018 [citado 5 abr. 2020];88:[aprox. 11 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20706996/26.

  27. Loeken MR. Mechanisms of congenital malformations in pregnancies with pre-existing diabetes. Curr Diab Rep [internet]. 2020 [citado 5 abr. 2020];20(54):[aprox. 12 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803009/27.

  28. ADA. American Diabetes Association. Management of diabetes in pregnancy: Standards of medical care in diabetes. Diabetes Care [internet]. 2021 [citado 5 abr. 2021];44(Suppl 1):[aprox. 10 p.]. Disponible en: https://diabetesjournals.org/care/article/45/Supplement_1/S232/138916/15-Management-of-Diabetes-in-Pregnancy-Standards28.

  29. Wang X, Wu W, Zheng W, Fang X, Chen L, Rink L, et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr [internet]. 2019 [citado 5 abr. 2020];110:[aprox. 14 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31161192/29.

  30. Karamali M, Heidarzadeh Z, Seifati SM, Samimi M, Tabassi Z, Talaee N. Zinc supplementation and the effects on pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Exp Clin Endocrinol Diabetes [internet]. 2016 [citado 5 abr. 2020];124:[aprox. 5 p.]. Disponible en: http://dx.doi.org/10.1055/s-0035-156414630.

  31. Eriksson UJ. Diabetes in Pregnancy: Retarded Fetal Growth, Congenital Malformations and Feto-Maternal Concentrations of Zinc, Copper and Manganese in the Rat. J Nutr [internet]. 1984 [citado 5 abr. 2020];114:[aprox. 7 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6699731/31.

  32. Uriu-Hare JY, Stern JS, Keen CL. Infuence of maternal dietary Zn intake on expression of diabetes-induced teratogenicity in rats. Diabetes [internet]. 1989 [citado 5 abr. 2020];38:[aprox. 8 p.]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/2792578/32.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Medicentro. 2022;26