medigraphic.com
SPANISH

Cirugía de Columna

ISSN 2992-7749 (Electronic)
ISSN 2992-7897 (Print)
Órgano Oficial de difusión científica de la Asociación Mexicana de Cirujanos de Columna A. C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • Políticas
    • Políticas éticas
    • Políticas de acceso abierto
    • Políticas de revisión de manuscritos
    • Políticas editoriales generales
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 4

<< Back Next >>

Cir Columna 2024; 2 (4)

Correlation between cervical spondylotic myelopathy with the degree of medullar stenosis in Mexican population

Albavera-Gutiérrez RR, Martínez-Tapia AG, Gutiérrez-Cortés JC, Vega-Rosas A
Full text How to cite this article 10.35366/118094

DOI

DOI: 10.35366/118094
URL: https://dx.doi.org/10.35366/118094

Language: Spanish
References: 21
Page: 217-222
PDF size: 265.88 Kb.


Key words:

cervical vertebrae, spinal cord compression, vertebral osteoarthritis, spinal cord diseases.

ABSTRACT

Introduction: cervical spondylotic myelopathy (CSM) is the most common form of spinal cord injury in adults. We sought to evaluate the relationship between the degree of narrowness of the spinal canal and the degree of clinical severity of CSM in Mexican population. Material and methods: an observational, comparative and cross-sectional study was carried out where the association between the degree of stenosis of the cervical spinal canal measured by the Torg-Pavlov index in lateral cervical spine radiography and the level of clinical affection of the ECM by Nurick scale, in patients with this diagnosis and controls without cervical spine disease. Results: 79 participants over 55 years of age were recruited, of which 39 had a diagnosis of CSM and 40 were controls without cervical spine conditions. An average Torg-Pavlov index of 0.8256 cm was found in participants with CSM and 1.021 in controls (p < 0.0001), which was congruent at the different levels between C3-C7. A positive correlation was found between the Torg-Pavlov index and the Nurick scale in patients with CSM (p < 0.0001) and a ROC curve with an area of 0.8186 when comparing the Torg-Pavlov index of participants with CSM and controls. Conclusions: the Torg-Pavlov index is a useful and cost-effective method in the initial approach to CSM in Mexican population, since it positively correlates the narrowness of the cervical spinal canal with the degree of clinical severity using the Nurick scale.


REFERENCES

  1. Watanabe M, Chikuda H, Fujiwara Y, Furuya T, Kanchiku T, Nagoshi N, et al. Japanese Orthopaedic Association (JOA) Clinical practice guidelines on the Management of Cervical Spondylotic Myelopathy,2020 - Secondary publication. J Orthop Sci. 2023; 28: 1-45. doi: 10.1016/j.jos.2022.03.012.

  2. New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014; 52: 97-109. doi: 10.1038/sc.2012.165.

  3. Vega-Pérez OE. Incidencia de mielopatía espondilótica cervical en el periodo 2005 al 2009. (Trabajo de grado de especialización). Universidad Nacional Autónoma de México. 2010. Recuperado de https://repositorio.unam.mx/contenidos/310528

  4. Opara J, Odzimek M. Cervical Spondylotic Myelopathy-Diagnostics and Clinimetrics. Diagnostics (Basel). 2024; 14: 556. doi: 10.3390/diagnostics14050556.

  5. Jajeh H, Lee A, Charls R, Coffin M, Sood A, Elgafy H. A clinical review of hand manifestations of cervical myelopathy, cervical radiculopathy, radial, ulnar, and median nerve neuropathies. J Spine Surg. 2024; 10: 120-134. doi: 10.21037/jss-23-39.

  6. Bonosi L, Musso S, Cusimano LM, Porzio M, Giovannini EA, Benigno UE, et al. The role of neuronal plasticity in cervical spondylotic myelopathy surgery: functional assessment and prognostic implication. Neurosurg Rev. 2023; 46: 149. doi: 10.1007/s10143-023-02062-9.

  7. McCormick JR, Sama AJ, Schiller NC, Butler AJ, Donnally CJ 3rd. Cervical Spondylotic Myelopathy: a guide to diagnosis and management. J Am Board Fam Med. 2020; 33: 303-313. doi: 10.3122/jabfm.2020.02.190195.

  8. Aebli N, Wicki AG, Rüegg TB, Petrou N, Eisenlohr H, Krebs J. The Torg-Pavlov ratio for the prediction of acute spinal cord injury after a minor trauma to the cervical spine. Spine J. 2013; 13: 605-612. doi: 10.1016/j.spinee.2012.10.039.

  9. Qudsieh H, Al-Rawashdeh I, Daradkeh A, Abualnadi T, Al Tah B. Variation of Torg-Pavlov ratio with age, gender, vertebral level, dural sac area, and ethnicity in lumbar magnetic resonance imaging. J Clin Imaging Sci. 2022; 12: 53. doi: 10.25259/JCIS_67_2022.

  10. Moon MS, Choi WR, Lim HG, Lee SY, Wi SM. Pavlov's ratio of the cervical spine in a Korean population: a comparative study by age in patients with minor trauma without neurologic symptoms. Clin Orthop Surg. 2021; 13: 71-75. doi: 10.4055/cios19174.

  11. Louie PK, Nemani VM, Leveque JA. Anterior cervical corpectomy and fusion for degenerative cervical spondylotic myelopathy: case presentation with surgical technique demonstration and review of literature. Clin Spine Surg. 2022; 35: 440-446. doi: 10.1097/BSD.0000000000001410.

  12. Zhou M, Xu X, Chen H, Qi B. Comparing two surgical approaches for treating multilevel cervical spondylotic myelopathy: a meta-analysis. Eur Spine J. 2023; 32: 3485-3496. doi: 10.1007/s00586-023-07790-6.

  13. Montano N, Ricciardi L, Olivi A. Comparison of anterior cervical decompression and fusion versus laminoplasty in the treatment of multilevel cervical spondylotic myelopathy: a meta-analysis of clinical and radiological outcomes. World Neurosurg. 2019; 130: 530-536.e2. doi: 10.1016/j.wneu.2019.06.144.

  14. Boogaarts HD, Bartels RH. Prevalence of cervical spondylotic myelopathy. Eur Spine J. 2015; 24 Suppl 2: 139-141. doi: 10.1007/s00586-013-2781-x.

  15. Kim HJ, Tetreault LA, Massicotte EM, Arnold PM, Skelly AC, Brodt ED, et al. Differential diagnosis for cervical spondylotic myelopathy: literature review. Spine (Phila Pa 1976). 2013; 38: S78-S88. doi: 10.1097/BRS.0b013e3182a7eb06.

  16. Hesni S, Baxter D, Saifuddin A. The imaging of cervical spondylotic myeloradiculopathy. Skeletal Radiol. 2023; 52: 2341-2365. doi: 10.1007/s00256-023-04329-0.

  17. Gibson J, Nouri A, Krueger B, Lakomkin N, Nasser R, Gimbel D, et al. Degenerative cervical myelopathy: a clinical review. Yale J Biol Med. 2018; 91: 43-48.

  18. Pepke W, Almansour H, Richter M, Akbar M. Spondylotic cervical myelopathy: indication of surgical treatment. Orthopade. 2018; 47: 474-482. doi: 10.1007/s00132-018-3566-z.

  19. Mathkour M, McCormack E, Hanna J, Werner C, Skinner K, Borchardt JA, et al. Iatrogenic spinal cord injury with tetraplegia after an elective non-spine surgery with underlying undiagnosed cervical spondylotic myelopathy: literature review and case report. Clin Neurol Neurosurg. 2019; 187: 105549. doi: 10.1016/j.clineuro.2019.105549.

  20. Takasawa E, Sorimachi Y, Iizuka Y, Tsunoda D, Mieda T, Iizuka H, et al. Risk factors for rapidly progressive neurological deterioration in cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2019; 44: E723-E730. doi: 10.1097/BRS.0000000000002969.

  21. Mahdavi A, Rasti S. Dynamic flexion-extension magnetic resonance imaging of the cervical spine: an evolutionary tool for diagnosis and management of cervical spondylotic myelopathy. World Neurosurg. 2024; 184: 138-147. doi: 10.1016/j.wneu.2024.01.081.




Figure 1
Figure 2
Figure 3
Figure 4
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cir Columna. 2024;2