medigraphic.com
SPANISH

Cirugía de Columna

ISSN 2992-7749 (Electronic)
ISSN 2992-7897 (Print)
Órgano Oficial de difusión científica de la Asociación Mexicana de Cirujanos de Columna A. C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • Políticas
    • Políticas éticas
    • Políticas de acceso abierto
    • Políticas de revisión de manuscritos
    • Políticas editoriales generales
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 4

<< Back Next >>

Cir Columna 2024; 2 (4)

Titanium levels in early-onset scoliosis patients treated with growing rods

Díez-Sanchidrián E, Díez-Ulloa MA
Full text How to cite this article 10.35366/118096

DOI

DOI: 10.35366/118096
URL: https://dx.doi.org/10.35366/118096

Language: Spanish
References: 24
Page: 231-236
PDF size: 309.85 Kb.


Key words:

spine, pediatric spine, scoliosis, early-onset scoliosis, growing rods, titanium.

ABSTRACT

Titanium is a metal, that is in the vast majority of spinal implants. The local tissue reaction to titanium has been described, as well as titanium blood and distant tissue levels in carriers of said spinal implants. Early-onset scoliosis sometimes requires interventions to instrument the spine, but it must allow correct development of the rib cage, so long definitive spinal fusions must be avoided and thus implants that allow growth (growing rods, growth-friendly) were developed. To lengthen them, it is necessary to undergo surgery on the patient. In order to avoid repeated interventions, growth rods have been developed that elongate using magnetic fields without the need for surgical intervention. Metallosis has been described in carriers of these magnetic bars. A systematic review of the literature is performed to see if magnetic growing rods produce higher levels of titanium than the traditional ones. Patients with magnetic growth bars present higher titanium levels than those with traditional ones, but these also show titanium levels and even control patients without any implant also present them. To date no one has proven a definitively deleterious effect of titanium, but it is a ubiquitous element although it is not present in any physiological metabolic pathway in the human being.


REFERENCES

  1. Schittny J. Development of the lung. Cell Tissue Res. 2017; 367: 427-444

  2. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthop. 2013; 4: 167-174. doi: 10.5312/ wjo.v4.i4.167.

  3. Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am. 2008; 90: 1272-1281. doi: 10.2106/JBJS.G.00184.

  4. Johnston C, Karol L, Thornberg D, Jo C, Eamara P.The 18-cm thoracic-height threshold and pulmonary function in non-neuromuscular early-onset scoliosis. A reassesment. JBJS Open Access. 2021; 19: e21.00093. doi: 10.2106/JBJS.oa.21.00093.

  5. Early Onset Scoliosis | Scoliosis Research Society [Internet]. www.srs.org. Available in: https://www.srs.org/Patients/Conditions/Scoliosis/Early- Onset-Scoliosis

  6. Teoh KH, Von Ruhland C, Evans SL, James SH, Jones A, Howes J, et al. Metallosis following implantation of magnetically controlled growing rods in the treatment of scoliosis: a case series. Bone Joint J. 2016; 98-B: 1662-1667. doi: 10.1302/0301-620X.98B12.38061.

  7. Wang J, Yu W, Sandhu H, Betts F, Bhuta S, Delamarter R. Metal debris from titanium spinal implants. Spine. 1999; 24: 899-903. doi: 10.1097/000007632-199905010-00011.

  8. Kasai Y, Iida R, Uchida A. Metal concentrations in the serum and hair of patients with titanium alloy implants. Spine. 2003; 27: 1320-1326.

  9. Yilgor C, Efendiyev A, Akbiyik F, Demirkiran G, Senkoylu A, Alanay A, et al. Metal ion release during growth-friendly instrumentation for early-onset scoliosis: a preliminary study. Spine Deform. 2018; 6: 48-53. doi: 10.1016/j.jspd.2017.06.005.

  10. Zhang T, Sze KY, Peng ZW, Cheung KMC, Lui YF, Wong YW, et al. Systematic investigation of metallosis associated with magnetically controlled growing rod implantation for early-onset scoliosis. Bone Joint J. 2020; 102-B (10): 1375-1383. doi: 10.1302/0301-620X.102B10.BJJ-2020-0842.R1.

  11. Li Y, Graham CK, Robbins C, Caird MS, Farley FA. Elevated serum titanium levels in children with early onset scoliosis treated with growth-friendly instrumentation. J Pediatr Orthop. 2020; 40 (6): e420-e423. doi: 10.1097/BPO.0000000000001463.

  12. Borde MD, Sapare S, Schutgens E, Ali C, Noordeen H. Analysis of serum levels of titanium and aluminium ions in patients with early onset scoliosis operated upon using the magnetic growing rod-a single centre study of 14 patients. Spine Deform. 2021; 9 (5): 1473-1478. doi: 10.1007/ s43390-021-00335-1.

  13. Luders KA, Braunschweig L, Ziola-Frankowska A, Stojek A, Jakkielska D, Wichmann A, et al. Titanium wear from magnetically controlledgrowing rods (MCGRs) for the treatment of spinal deformities in children. SciRep. 2022; 12 (1): 10811. doi: 10.1038/ s41598-022-15057-1.

  14. Díez-Ulloa MA, Puente-Sánchez L, Chaves-Reyes R, Vázquez-Agra N, Santín-Mon D, Domínguez-Barreiro H, et al. Niveles tisulares y hemáticos de titanio en pacientes tratados con barras de crecimiento (magnético) por escoliosis de inicio precoz. En: Libro deAbstracts GEER. Valencia. 2,3 Junio 2023.

  15. Alberghina F, McManus R, Keogh C, Turner H, Moore D, Noel J, et al. The evaluation of serum metal ion levels and metallosis in graduated patients with magnetically controlled growing rods. J Pediatr Orthop. 2024; 44 (1): 43-48. doi: 10.1097/ BPO.0000000000002526.

  16. Helenius IJ. Standard and magnetically controlled growing rods for the treatment of early onset scoliosis. Ann Transl Med. 2020; 8 (2): 26. doi: 10.21037/atm.2019.09.72.

  17. Nordeen H, Shah S, Elsebaie H, Garrido E, Farooq N, Al Mukhtar M. In vivo distraction force and length measurements of growing rods. Which factors influence the ability to lengthen. Spine. 2011; 36 (26): 2299-2303. doi: 10.1097/BRS.0b013e31821b8e16.

  18. Sankar WN, Skaggs DL, Yazici M, Johnston CE 2nd, Shah SA, Javidan P, et al. Lengthening of dual growing rods and the law of diminishing returns. Spine (Phila Pa 1976). 2011; 36 (10): 806-809.

  19. Scoliosis Research Society (SRS). (June 2023). Scoliosis Research Society Position Statement on Magnetic Controlled Growing Rods (MCGR). [Position statement]. Available in: https://www.srs.org/Education/Quality-and-Safety/ Informational--Position-Statements

  20. Rushton PRP, Siddique I, Crawford R, Birch N, Gibson MJ, Hutton MJ. Magnetically controlled growing rods in the treatment of early-onset scoliosis: a note of caution. Bone Joint J. 2017; 99-B (6): 708-713. doi: 10.1302/0301-620X.99B6.BJJ-2016-1102.R2.

  21. Joyce TJ, Smith SL, Rushton PRP, Bowey AJ, Gibson MJ. Analysis of explanted magnetically controlled growing rods from seven UK spinal centers. Spine (Phila Pa 1976). 2018; 43 (1): E16-E22. doi: 10.1097/BRS.0000000000002221.

  22. Toth JM, Ankomah F, Kawakami N, Uno K. A comparison of the inflammatory host response to particulate debris adjacent to unlocked and locked screws of a growth guidance system for early onset scoliosis. Eur Spine J. 2022; 31 (9): 2301-2310. doi: 10.1007/s00586-022-07271-2.

  23. Lukina E, Laka A, Kollerov M, Sampiev M, Mason P, Wagstaff P, et al. Metal concentrations in the blood and tissues after implantation of titanium growth guidance sliding instrumentation. Spine J. 2016; 16 (3): 380-388. doi: 10.1016/j.spinee.2015.11.040.

  24. Danielewicz A, Wójciak M, Sawicki J, Dresler S, Sowa I, Latalski M. Comparison of different surgical systems for treatment of early-onset scoliosis in the context of release of titanium ions. Spine. 2021; 46 (10): E594-E601. doi:10.1097/BRS.0000000000003846.




Figure 1
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cir Columna. 2024;2