2024, Number 5
<< Back Next >>
Rev ADM 2024; 81 (5)
Artificial intelligence, uses of software and its applications in dental radiology.
Oropeza OA, Gaona E, Molina FN, Robles PG, Castañeda CE
Language: Spanish
References: 28
Page: 271-279
PDF size: 489.85 Kb.
ABSTRACT
Introduction: artificial intelligence (AI) is used in different fields, such as medicine, with multiple results, so the use developed in dental radiology can add importance to the dental profession.
Objective: the purpose of this work was to identify the various artificial intelligence software applications in dental radiology.
Material and methods: an electronic review of the information related to AI software applied in dental radiology was carried out. The inclusion criteria consisted of AI-based technology in dental x-rays and their applications in dental practice.
Results: within the AI software, we could find the following: AI Dental Image from Carestream, Pearl by DentalMonitoring, Vizi AI from Vatech, and Diagnocat: Promadent AI Insights. And some companies that use AI in dental radiology, such as Zebra Medical Vision, Allisone Technologies, and DentiMax, With the following applications in dental radiology, they improve diagnostic accuracy, workflow efficiency, detect dental problems at an early stage, diagnose cavities, gum diseases, dental fractures, and maxillofacial tumors, and also support density measurement of bones and the location of cephalometric reference points.
Conclusions: in the last decade, multiple AI software programs have been developed that have the potential to revolutionize dental radiology. By improving diagnostic accuracy and early detection of dental problems, AI can help dentists provide more accurate and safer dental care to their patients.
REFERENCES
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019; 28: 73-81.
Ramesh AN, Kambhampati C, Monson JR, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004; 86: 334-338.
Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69S: S36-40.
Ossowska A, Kusiak A, Swietlik D. Artificial intelligence in dentistry-narrative review. Int J Environ Res Public Health. 2022; 19: 3449.
Jadad-Bechara E. El impacto de la inteligencia artificial en la Odontología. Dental Tribune. 2023. Disponible en: https://la.dental-tribune.com/news/el-impacto-de-la-inteligencia-artificial-en-la-odontologia/
Marwaha J. Artificial intelligence in conservative dentistry and endodontics: a game-changer. J Conserv Dent Endod. 2023; 26: 514-518.
Oguz FE, Ekersular MN, Sunnetci KM, Alkan A. Can chat GPT be utilized in scientific and undergraduate studies? Ann Biomed Eng. 2024; 52: 1128-1130. doi: 10.1007/s10439-023-03333-8.
Mohammad-Rahimi H, Motamedian SR, Rohban MH, Krois J, Uribe SE, Mahmoudinia E et al. Deep learning for caries detection: a systematic review. J Dent. 2022; 122: 104115.
Sadr S, Mohammad-Rahimi H, Motamedian SR, Zahedrozegar S, Motie P, Vinayahalingam S et al. Deep learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy. J End. 2023; 49: 248-261.e3.
Revilla-León M, Gómez-Polo M, Barmak AB, Inam W, Kan JYK, Kois JC et al. Artificial intelligence models for diagnosing gingivitis and periodontal disease: a systematic review. J Prosthet Dent. 2023; 130: 816-824.
Mohammad-Rahimi H, Motamedian SR, Pirayesh Z, Haiat A, Zahedrozegar S, Mahmoudinia E et al. Deep learning in periodontology and oral implantology: a scopingreview. J Periodontal Res. 2022; 57: 942-951.
Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, Krishnamurthy VR. Artificial intelligence applications in implant dentistry: a systematic review. J Prosthet Dent. 2023; 129: 293-300.
Chopra S, Vranckx M, Ockerman A, Ostgren P, Krüger-Weiner C, Benchimol D et al. A retrospective longitudinal assessment of artificial intelligence-assisted radiographic prediction of lower third molar eruption. Sci Rep. 2024: 14; 994. doi: 10.1038/s41598-024-51393-0.
Cai X, Zhang H, Wang Y, Zhang J. Digital pathology-based artificial intelligence models for differential diagnosis and prognosis of sporadic odontogenic keratocysts. Int J Oral Sci. 2024; 16: 16. doi: 10.1038/s41368-024-00287-y.
Ali MA, Fujita D, Kobashi S. Teeth and prostheses detection in dental panoramic X-rays using CNN-based object detector and a priori knowledge-based algorithm. Sci Rep. 2023; 13: 16542. doi: 10.1038/s41598-023-43591-z.
Schwendicke F, Krois J. Data dentistry: how data are changing clinical care and research. J Dent Res. 2022; 101: 21-29.
Park JH, Kim Y-J, Kim J, Kim J, Kim I-H, Kim N et al. Use of artificial intelligence to predict outcomes of nonextraction treatment of Class II malocclusions. Seminars in Orthodontics. 2021; 27: 87-95.
Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: a scoping review. AJO-DO. 2021; 160: 170-192.e4.
Katsumata A. Deep learning and artificial intelligence in dental diagnostic imaging. Jpn Dent Sci Rev. 2023; 59: 329-333.
Turosz N, Checinska K, Checinski M, Brzozowska A, Nowak Z, Sikora M. Applications of artificial intelligence in the analysis of dental panoramic radiographs: an overview of systematic reviews, Dentomaxillofac Radiol. 2023: 52; 20230284. doi: 10.1259/dmfr.20230284.
Oztekin F, Katar O, Sadak F, Yildirim M, Cakar H, Aydogan M et al. An explainable deep learning model to prediction dental caries using panoramic radiograph images. Diagnostics (Basel). 2023; 13: 226.
Cordero-Bayo JM. Planificación digital de defectos óseos con necesidad de implantes para injertos óseos personalizados en bloques. Tesis Doctoral. Sevilla España. Universidad de Sevilla. 2022. Disponible en: https://idus.us.es/handle/11441/142990
Salunke D, Joshi R, Peddi P, Mane DT. Deep learning techniques for dental image diagnostics: a survey. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India. 2022: 244-257. doi: 10.1109/ICAISS55157.2022.10010576.
Goswami M, Maheshwari M, Baruah-Singh A, Gupta R. Automated detection of oral cancer and dental caries using convolutional neural network. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India. 2021: 1-5. doi: 10.1109/ICRITO51393.2021.9596537.
Mallick M, Govindaraju S, Kumar M, Kumar S, Kandasamy M, Anitha P. Analysis of panoramic images using deep learning for dental disease identification. Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India. 2023: 1513-1517. doi: 10.1109/ICAIS56108.2023.10073939.
Pan Y, Xiaolong G, Chuangchuang M, Senrong Q, Gang L. Detection of vertical root fractures by cone-beam computed tomography based on deep learning. Dentomaxillofac Radiol. 2023; 52: 20220345. doi: 10.1259/dmfr.20220345.
Motoki F, Kyoko I, Naoki S, Yoshiko A, Yudai Y, Shota K et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020; 36: 337-343
Suazo Galdames. Applications of artificial intelligence in dentomaxillofacial diagnosis. Rev Cubana Estomatol. 2024; 61. Disponible en: https://revestomatologia.sld.cu/index.php/est/article/view/4934