2022, Number 1
Need for improvement in mathematical models of epidemiology
Language: Spanish
References: 19
Page:
PDF size: 869.54 Kb.
ABSTRACT
Introduction: In Cuba mathematical models are formulated, but they are not contemplated for passing graduate or undergraduate degrees.Objective: To identify the need to work with mathematical simulations. Methods: A stochastic model present in the EpiModel package of the R program was used. Three different situations were simulated, the first with violations of distancing and general hygiene, the second with improvements in these two aspects, plus the immunity achieved to 70% of the population by vaccination and the third with notable improvements in hygiene and distancing together with vaccination. The behavior of the reproductive number with the early R package was also calculated from the incidence. Results: It is assessed how the trajectories with the stochastic models have more variability and how the reduction of contacts flattens the curve. The spread of the epidemic is valued in situations of prevention violations and in others where there is prevention and also vaccination. Conclusions: Sufficient evidence is presented on the use and need of mathematical models to support decision-making in epidemiology, the need to improve the theory of epidemics in graduate school is identified, which can be extended to undergraduate.
REFERENCES
Castilla MÁ, Guerra MF, Villadiego EM. Salud pública: un campo de confrontación del paradigma disciplinar y transdisciplinar. Revista Avances En Salud [Internet]. 2018 [citado 06 Jul 2021];2(2):48-57. Disponible en: Disponible en: https://revistas.unicordoba.edu.co/index.php/avancesalud/article/view/1457 1.
Más Bermejo P, Vidal Ledo MJ, Baldoquín Rodríguez W, Seuc Jo AH, Guinovart Díaz R, Pérez Rodríguez N, et al. Organización de la investigación epidemiológica para la lucha antiepidémica contra la COVID-19 en Cuba. INFODIR [Internet]. 2020 [citado 08 Jul 2021];32. Disponible en: Disponible en: http://revinfodir.sld.cu/index.php/infodir/article/view/831/1304 2.
Moradian N, Ochs HD, Hamblin MR, Camargo CA, Martinez JA, Biamonte JD, et al. The urgent need for integrated science to fight COVID‑19 pandemic and beyond. J Transl Med [Internet]. 2020 [citado 12 Ago 2021];18:25. Disponible en: Disponible en: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-020-02364-2 4.
Smetschka B, Gaube V. Co-creating formalized models: Participatory modelling as method and process in transdisciplinary research and its impact potentials. Environmental Science and Policy [Internet]. 2020 [citado 19 Ago 2021];103:41-49. Disponible en: Disponible en: https://enviro2.doe.gov.my/ekmc/wp-content/uploads/2020/07/Co-creating-formalized-models-Participatory-modelling-as-_2020_Environmenta.pdf 6.
Abelló Ugalde IA, Guinovart Díaz R, Morales Lezca W. El modelo SIR básico y políticas antiepidémicas de salud pública para la COVID-19 en Cuba. Rev cuba salud pública [Internet]. 2020 [citado 09 Ago 2021];46(Suppl 1):e2597. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662020000500013 9.
Sánchez Vargas HE, Beltrán Ramos-Sánchez L, Galindo-Llanes PA, Salgado Rodríguez A. Modelación físico-matemática para la toma de decisiones frente a la COVID-19 en Cuba. Rev retos [Internet]. 2020 Jul-Dic [citado 06 Ago 2021];14(2):55-86. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2306-91552020000200054 11.
Estrada Álvarez JM, Ospina Ramírez JJ, Hincapié Acuña M, Gómez González MP. Estimación del intervalo serial y número reproductivo básico para los casos importados de COVID-19. Rev salud pública [Internet]. 2020 Mar-Abr [citado 12 Ago 2021];22(2). Disponible en: Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-00642020000200214&lng=en&nrm=iso 12.
Peralta Polo J, Caro Candezano MA, Niebles Núñez L. Dos enfoques matemáticos epidemiológicos para modelar el comportamiento de los decesos causados por el CoViD-19. Investigación e Innovación en Ingenierías [Internet]. 2020 Jul-Dic [citado 14 Ago 2021];8(2). Disponible en: Disponible en: http://revistas.unisimon.edu.co/index.php/innovacioning/article/view/4257 14.
Jiménez Romero C, Tisnés A, Linares S. Modelo de simulación del COVID-19 basado en agentes. Aplicación al caso argentino. POSICION [Internet]. 2020 [citado 17 Ago 2021];3. Disponible en: Disponible en: https://ri.unlu.edu.ar/xmlui/bitstream/handle/rediunlu/687/Jimenez%20Romero_COVID1-9.pdf?sequence=1&isAllowed=y 15.
Álvares Pomar L, Rojas Galeano S. Herramienta basada en agentes para la valoración del impacto de intervenciones no farmacéuticas contra la COVID-19. TecnoL [Internet]. 2020 Sep-Dic [citado 09 Ago 2021];23(49). Disponible en: Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-77992020000300179 16.
Vidal Ledo M, Guinovart Díaz R, Baldoquín Rodríguez W, Valdivia Onega NC, Morales Lezca W. Modelos matemáticos para el control epidemiológico. Educ Med Super [Internet]. 2020 Abr-Jun [citado 22 Ago 2021];34(2). Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21412020000200026 19.