medigraphic.com
SPANISH

MediSur

ISSN 1727-897X (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 4

<< Back Next >>

Medisur 2022; 20 (4)

Mathematical Statistical Study of the behavior of COVID-19 in the province of Cienfuegos. Cuba

Cortés CM, Medina MF, Santana JM, Cortés IM, Miranda PR
Full text How to cite this article

Language: Spanish
References: 21
Page: 683-698
PDF size: 644.18 Kb.


Key words:

COVID-19, prognosis.

ABSTRACT

Background: The world and Cuba in the last two years have been affected by Covid-19. It is of vital importance for Public Health to have statistical studies of infected cases, prognostic equations of the same and possible peaks of the disease, with a view to applying the appropriate measures to combat the pandemic.
Objective: The objective of the work is to carry out statistical studies on the data of confirmed cases in the province of Cienfuegos, in the period from March 2020 to August 2021.
Methods: The Applied Mathematics Research Group of the University of Cienfuegos carried out a statistical study of the databases of patients confirmed with Covid-19, in the 8 municipalities of the province of Cienfuegos, from March 2020 to August 2021. applied descriptive statistics on the accumulated confirmed cases, age, sex, doses of vaccines received and the probable dates of the highest pandemic peak. The Gompertz, Weibull and Loglogistic logistic population growth models were used to obtain forecast equations for confirmed cases. The basic reproduction numbers Ro and effective Rt were calculated.
Results: Knowledge of the adjustment equations in the municipalities of the province of Cienfuegos allows health and government authorities to design strategies to reduce effective reproduction and their monitoring increases the effectiveness of the measures taken. There is an adequacy of the models presented with respect to the predicted and real values, which allows their reliability for the forecasts made.
Conclusions: The logistic, Weibull and Gompertz population growth models used to obtain forecast equations in the province of Cienfuegos of confirmed cases of COVID-19, allow future monitoring, control and projection of the behavior of the pandemic according to significant indicators in Cienfuegos.


REFERENCES

  1. Organización Mundial de la Salud. WHO Director-General's remarks at the 65th Session of the Commission on Narcotic Drugs - 15 March 2022, Humanitarian approach to drug policy; opportunity and challenges for an effective cooperation between public authorities and health-based organizations. Ginebra: OMS; 2022[citado 05/05/2022]. Disponible en: Disponible en: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-65th-session-of-the-commission-on-narcotic-drugs-15-march-2022 1.

  2. Hu B, Guo H, Zhou P, Li Zhi Z. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141-54.

  3. Medina Mendieta JF, Cortés Cortés M, Cortés Iglesias M. COVID-19 Forecasts for Cuba Using Logistic Regression and Gompertz Curves. MEDICC review. 2020; 22(3):32-9.

  4. Medina Mendieta JF, Cortés Cortés ME, Cortés Iglesias M. Ajuste de curvas de crecimiento poblacional aplicadas a la COVID-19 en Cuba. Rev Haban Cienc Méd. 2020;19(Supl.):e3353.

  5. Medina Mendieta JF, Cortés Cortés ME, Cortés Iglesias M, Pérez Fernández A, del C, Manzano Cabrera M. Estudio sobre modelos predictivos para la COVID-19 en Cuba. Medisur[Internet]. 2020[citado 04/03/2021];18(3):[aprox. 7 p.]. Disponible en: scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2020000300431

  6. Batista M. Estimation of the final size of the COVID-19 epidemic. MedRxiv BioRxiv. 2020;11:34-7.

  7. Jia L, Li K, Jiang Y, Guo X, Zhao Z. Prediction and analysis of Coronavirus Disease 2019. Ithaca: Cornell University; 2020[citado 05/2/2022]. Disponible en: Disponible en: ArXiv200305447 Q-BioPE 7.

  8. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? The Lancet. 2020;395(10231):1225-8.

  9. Qeadan F, Honda T, Gren LH, Dailey-Provost J, Benson LS, VanDerslice JA, et al. Naive Forecast for COVID-19 in Utah Based on the South Korea and Italy Models-the Fluctuation between Two Extremes. Int J Environ Res Public Health. 16 de abril de 2020;17(8):2750.

  10. Villalobos-Arias M. Estimation of population infected by COVID-19 using regression generalized logistics and optimization heuristics. ArXiv Prepr ArXiv200401207. 2020;

  11. Seber GA. Nonlinear Regression Models. En: Seber G, ed. The Linear Model and Hypothesis: A General Unifying Theory. Manhattan: Springer International Publishing; 2015.p. 117-28.

  12. Moamer S, Baghestani AR, Pourhoseingholi MA, Maboudi AAK, Shahsavari S, Zali MR, et al. Application of the parametric regression model with the four-parameter log-logistic distribution for determining of the effecting factors on the survival rate of colorectal cancer patients in the presence of competing risks. Iran Red Crescent Med J. 2017;19(6):23-7.

  13. Finney DJ. Bioassay and the practice of statistical inference. International Statistical Review. Internationale Statistique. 1979;12:1-12.

  14. Kyurkchiev N, Iliev A. Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz. Moldova: Lambert Academic Publishing; 2018.

  15. Wais P. A review of Weibull functions in wind sector. Renew Sustain Energy Rev. 2017;70:1099-1107.

  16. Brain P, Cousens R. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 1989;29(2):93-96.

  17. Groot JC, Cone JW, Williams BA, Debersaques FM, Lantinga EA. Multiphasic analysis of gas production kinetics for in vitro fermentation of rinant feeds. Anim Feed Sci Technol. 1996;64(1):77-89.

  18. Ricketts JH, Head GA. A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. Am J Physiol-Regul Integr Comp Physiol. 1999;277(2):R441-R454.

  19. White LF, Pagano M. Transmissibility of the influenza virus in the 1918 pandemic. PLoS One. 2008;3(1):e1498.

  20. Cori A, Ferguson NM, Fraser C, Cauchemez S. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. Am J Epidemiol. 2013;178(9):1505-12.

  21. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the Royal Society B. Pro R Soc. 2007;274(1609):599-604.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Medisur. 2022;20