2022, Number 3
<< Back Next >>
Revista Cubana de Angiología y Cirugía Vascular 2022; 23 (3)
SARS-CoV-2 infection, endotheliitis and bile acids: an integrative view
Piñol JFN, Capó PV, Ruiz TJF, Montero GT, Borrajero MI, Domínguez ÁC, de Mendoza AJH, López ML
Language: Spanish
References: 64
Page: 1-19
PDF size: 322.21 Kb.
ABSTRACT
Introduction:
Endotheliitis is caused by complex mechanisms associated with immune-metabolic comorbidities as an expression of the damage produced by various agents, such as the case of proinflammatory actions due to the interaction of the SARS-CoV-2 virus with bile acids, which may be involved in mortality from COVID-19.
Objective:
To describe the biomolecular evidence of bile acid cytotoxicity on the endothelium and the possible relationship with endothelitis of histological sections of tissues from COVID-19 deaths, associated or not with known comorbidities.
Methods:
A systematic and critical review of the articles reported on bile acids and endothelitis from 1963 to 2021 was conducted on the websites (PubMed, SciELO, Lilacs and Elservier). It was cited the histology of lung tissue with endothelial damage in 34 deceased by COVID-19 at "Luis Díaz Soto" Central Military Hospital, whose histological sections were examined at "Hermanos Ameijeiras" Clinical Surgical Hospital. Likewise, the actions and physicochemical properties of bile acids that could be related to observed endothelitis in these histological sections were described.
Conclusions:
Hydrophobic bile acids conjugated with glycine, due to their properties and serum increases found in immune-metabolic comorbidities and hepato-intestinal diseases, could have a role in endothelitis present in COVID-19 patients, with severe and critical stages.
REFERENCES
Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. DOI: https://doi.org/10.1208/s12248-020-00532-21.
Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303. DOI: https://doi.org/10.1002/jgm.33032.
Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID 19: endocrine-immune-vascular interactions shapes clinical course. Endocrinology. 2020;161(10):e112. DOI: https://doi.org/10.1210/endocr/bqaa1123.
Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab. 2020;319(1):e105-e9. DOI: https://doi.org/10.1152/ajpendo.00198.20204.
Kundu S, Bansal S, Mangai KM, Sachidanandan C, Motiani RK, Bajaj A. Deciphering the role of hydrophobic and hydrophilicbile acids in angiogenesis using in vitro and in vivo model systems. Med Chem Comm. 2017 [acceso 03/07/2020];1-29. Disponible en: https://pubs.rsc.org/en/content/articlelanding/2017/md/c7md00475c5.
Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, et al. Role of bile acids in the regulation of food intake, and their dysregulation in metabolic disease. Nutrients. 2021;13(4):1104. DOI: https://doi.org/10.1016/j.livres.2018.09.0086.
Parl F, Gutstein WH, D'Aguillo AF, Baez A. Endothelial injury. Association with elevations of serum bile acid and cholesterol concentration in biliary-obstructed rats. Atherosclerosis. 1975;21(2):135-46. DOI: https://doi.org/10.1016/0021-9150(75)90075-17.
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol. 2018;9:1853. DOI: https://doi.org/10.3389/fimmu.2018.018538.
Guizoni DM, Vettorazzi JF, Carneiro EM, Davel AP. Modulation of endothelium-derived nitric oxide production and activity by taurine and taurine-conjugated bile acids. Nitric Oxide. 2020;94:48-53. DOI: https://doi.org/10.1016/j.niox.2019.10.0089.
Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, et al. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases. 2021;9(2):308-20. DOI: https://doi.org/10.12998/wjcc.v9.i2.30810.
Liu X, Wang Y. An overview of bile acid synthesis and its physiological and pathological functions. Yi Chuan. 2019;41(5):365-74. DOI: https://doi.org/10.16288/j.yczz.19-01111.
Kreisel W, Lazaro A, Trebicka J, Grosse Perdekamp M, Schmitt-Graeff A, Deibert P. Cyclic GMP in liver cirrhosis-role in pathophysiology of portal hypertension and therapeutic implications. Int J Mol Sci. 2021;22(19):10372. DOI: https://doi.org/10.3390/ijms22191037212.
Fiorillo B, Marchianò S, Moraca F, Sepe V, Carino A, Rapacciuolo P, et al. Discovery of bile acid derivatives as potent ACE2 activators by virtual screening and essential dynamics. J Chem Inf Model. 2022;62(1):196-209. DOI: https://doi.org/10.1021/acs.jcim.1c0112613.
Brevini T, Maes M, Webb GJ, Gelson WTH, Forrest S, Mlcochova P, et al. FXR inhibition reduces ACE2 expression, SARS-CoV-2 infection and may improve COVID-19 outcome. BioRxiv. 2022. DOI: https://doi.org/10.1101/2021.06.06.44678114.
Alexander Y, Osto E, Schmidt-Trucksäss A, Shechter M, Trifunovic D, Duncker DJ, et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of cardiology working groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis. Cardiovasc Res. 2021;117(1):29-42. DOI: https://doi.org/10.1093/cvr/cvaa08515.
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular endothelial cells: heterogeneity and targeting approaches. Cells. 2021;10(10):2712. DOI: https://doi.org/10.3390/cells1010271216.
Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev. 2019;99(3):1467-525. DOI: https://doi.org/10.1152/physrev.00037.201817.
Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost. 2019;17(2):283-94. DOI: https://doi.org/10.1111/jth.1437118.
Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial dysfunction: Is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 2019;20(15):3775. DOI: https://doi.org/10.3390/ijms2015377519.
Krüger-Genge A, Blocki A, Franke RP, Jung F. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019;20(18):4411. DOI: https://doi.org/10.3390/ijms2018441120.
Tuttolomondo A, Daidone M, Pinto A. Endothelial dysfunction and inflammation in ischemic stroke pathogenesis. Curr Pharm Des. 2020;26(34):4209-19. DOI: https://doi.org/10.2174/138161282666620041715412621.
Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int J Mol Sci. 2020;21(12):4257. DOI: https://doi.org/10.3390/ijms2112425722.
Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. 2019;12(4):851-61. DOI: https://doi.org/10.1038/s41385-019-0162-423.
Nakajima T, Okuda Y, Chisaki K, Shin WS, Iwasawa K, Morita T, et al. Bile acids increase endothelial Ca2+ concentration and nitric oxide production in vascular endothelial cells. Br J Pharmacol. 2000;130(7):1457-67. DOI: https://doi.org/10.1038/sj.bjp.070347124.
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev. 2021;101(2):683-731. DOI: https://doi.org/10.1152/physrev.00049.201925.
Vaz AR, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol. 2015;51(3):864-77. DOI: https://doi.org/10.1007/s12035-014-8731-826.
Lin YT, Chen LK, Jian DY, Hsu TC, Huang WC, Kuan TT, et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-PI3K-Akt signaling and subsequent ROS production and IKK/NF-?B activation. Cell Physiol Biochem. 2019;52(6):1398-1411. DOI: https://doi.org/10.33594/00000009827.
Lu S, She M, Zeng Q, Yi G, Zhang J. Sphingosine 1-phosphate and its receptors in ischemia. Clin Chim Acta. 2021;521:25-33. DOI: https://doi.org/10.1016/j.cca.2021.06.02028.
Mishra R, Mishra S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids. 2020;159:108639. DOI: https://doi.org/10.1016/j.steroids.2020.10863929.
Keitel V, Stindt J, Häussinger D. Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol. 2019;256:19-49. DOI: https://doi.org/10.1007/164_2019_23030.
Jutzeler CR, Bourguignon L, Weis CV, Tong B, Wong C, Rieck B, et al. Comorbidities, clinical signs and symptoms, laboratory findings, imaging features, treatment strategies, and outcomes in adult and pediatric patients with COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;37:101825. DOI: https://doi.org/10.1016/j.tmaid.2020.10182531.
Whitney JE, Silverman M, Norton JS, Bachur RG, Melendez E. Vascular endothelial growth factor and soluble vascular endothelial growth factor receptor as novel biomarkers for poor outcomes in children with severe sepsis and septic shock. Pediatr Emerg Care. 2020;36(12):e715-e9. DOI: https://doi.org/10.1097/PEC.000000000000163832.
Basic J, Stojkovic S, Assadian A, Rauscher S, Duschek N, Kaun C, et al. The relevance of vascular endothelial growth factor, hypoxia inducible factor-1 alpha, and clusterin in carotid plaque instability. J Stroke Cerebrovasc Dis. 2019;28(6):1540-5. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis33.
Alves-Filho JC, Marcel Silva Melo B, Ryffel B. MMP-9 Mediates cross-talk between neutrophils and endothelial cells in psoriasis. J Invest Dermatol. 2021;141(4):716-8. DOI: https://doi.org/10.1016/j.jid.2020.09.00634.
Amano H, Mastui Y, Ito Y, Shibata Y, Betto T, Eshima K, et al. The role of vascular endothelial growth factor receptor 1 tyrosine kinase signaling in bleomycin-induced pulmonary fibrosis. Biomed Pharmacother. 2019;117:109067. DOI: https://doi.org/10.1016/j.biopha.2019.10906735.
Ballmer-Hofer K. Vascular endothelial growth factor, from basic research to clinical applications. Int J Mol Sci. 2018;19(12):3750. DOI: https://doi.org/10.3390/ijms1912375036.
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020;66:109485. DOI: https://doi.org/10.1016/j.cellsig.2019.10948537.
Ieguchi K, Maru Y. Eph/Ephrin signaling in the tumor microenvironment. Adv Exp Med Biol. 2021;1270:45-56. DOI: https://doi.org/10.1007/978-3-030-47189-7_338.
Giorgio C, Hassan Mohamed I, Flammini L, Barocelli E, Incerti M, Lodola A, et al. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One. 2011;6(3):e18128. DOI: https://doi.org/10.1371/journal.pone.001812839.
Walshe J, Richardson NA, Al Abdulsalam NK, Stephenson SA, Harkin DG. A potential role for Eph receptor signalling during migration of corneal endothelial cells. Exp Eye Res. 2018;170:92-100. DOI: https://doi.org/10.1016/j.exer.2018.02.01740.
Del Gaudio I, Rubinelli L, Sasset L, Wadsack C, Hla T, Di Lorenzo A. Endothelial Spns2 and ApoM regulation of vascular tone and hypertension via sphingosine-1-phosphate. J Am Heart Assoc. 2021;10(14):e021261. DOI: https://doi.org/10.1161/JAHA.121.02126141.
Ren K, Lu YJ, Mo ZC, Liu X, Tang ZL, Jiang Y, et al. ApoA-I/SR-BI modulates S1P/S1PR2-mediated inflammation through the PI3K/Akt signaling pathway in HUVECs. J Physiol Biochem. 2017;73(2):287-96. DOI: https://doi.org/10.1007/s13105-017-0553-542.
Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B. 2015;5(2):151-7. DOI: https://doi.0rg/10.1016/j.apsb.2014.12.00943.
Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307-21. DOI: https://doi.org/10.1016/j.ccc.2019.12.00944.
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8):277. DOI: https://doi.org/10.3390/biomedicines808027745.
Bath PM, Krishnan K, Appleton JP. Nitric oxide donors (nitrates), L-arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database Syst Rev. 2017;4(4):CD000398. DOI: https://doi.org/10.1002/14651858.CD000398.pub246.
Porrini C, Ramarao N, Tran SL. Dr. NO and Mr. toxic - the versatile role of nitric oxide. Biol Chem. 2020;401(5):547-72. DOI: https://doi.org/10.1515/hsz-2019-036847.
Tenopoulou M, Doulias PT. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. F1000Res. 2020;9. DOI: https://doi.org/10.12688/f1000research.19998.148.
Yang ZL, Zhao Q, He Q. Nitric oxide. Med Gas Res. 2019;9(4):170. DOI: https://doi.org/10.4103/2045-9912.27395349.
Rodríguez-Morató J, Matthan NR. Nutrition and gastrointestinal microbiota, microbial-derived secondary bile acids, and cardiovascular disease. Curr Atheroscler Rep. 2020;22(9):47. DOI: https://doi.org/10.1007/s11883-020-00863-750.
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int. 2017;37(10):1420-30. DOI: https://doi.org/10.1111/liv.1339451.
Moezi L, Dehpour AR. Cardiovascular abnormalities in obstructive cholestasis: the possible mechanisms. Liver Int. 2013;33(1):7-15. DOI: https://doi.org/10.1111/j.1478-3231.2012.02803.x52.
Dopico AM, Bukiya AN. Regulation of Ca2+-sensitive K+ channels by cholesterol and bile acids via distinct channel subunits and sites. Curr Top Membr. 2017;80:53-93 DOI: https://doi.org/10.1016/bs.ctm.2017.07.00153.
Zhang R, Peng L, Ran H, Fan Y, Zhao Y, Cao F. Farnesoid X receptor activation modulates calcium homeostasis in rat aortic vascular smooth muscle cells. Chin J Physiol. 2018;61(4):210-20. DOI: https://doi.org/10.4077/CJP.2018.BAG55454.
Kida T, Tsubosaka Y, Hori M, Ozaki H, Murata T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33(7):1663-9. DOI: https://doi.org/10.1161/ATVBAHA.113.30156555.
Li C, Li J, Weng X, Lan X, Chi X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J Am Soc Hypertens. 2015;9(7):507-16. DOI: https//doi.org/10.1016/j.jash.2015.04.00656.
Liu H, Tian R, Wang H, Feng S, Li H, Xiao Y, et al. Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med. 2020,18(1):382. DOI: https://doi.org/10.1186/s12967-020-02539-x57.
Yan JJ, Fan HQ, Yang L. Bile acids in arrhythmia. Zhonghua Gan Zang Bing Za Zhi. 2020;28(4):361-4. DOI: https://doi.org/10.3760/cma.j.cn501113-20190308-0007458.
Costa FF, Rosário WR, Ribeiro Farias AC, de Souza RG, Duarte Gondim RS, Barroso WA. Metabolic syndrome and COVID-19: an update on the associated comorbidities and proposed therapies. Diabetes Metab Syndr. 2020;14(5):809-14. DOI: https://doi.org/10.1016/j.dsx.2020.06.01659.
Radenkovic D, Chawla S, Pirro M, Sahebkar A, Banach M. Cholesterol in relation to COVID-19: should we care about it? J Clin Med. 2020;9(6):1909. DOI: https://doi.org/10.3390/jcm906190960.
Montero González T, Hurtado de Mendoza Amat J, Fraga Martínez Y, Laguna Oliva L, del Rosario Cruz L, Torres-Gómez Y, et al. Experiencia en autopsias de fallecidos con la COVID-19 en el Hospital Militar Central "Dr. Luis Díaz Soto". Rev Cubana Med Milit. 2020 [acceso 20/01/2022];49(4). Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/85061.
Capó de Paz V, Borrajero Martínez I, Montero González T, Hurtado de Mendoza Amat J, de Armas Rodríguez Y, Domínguez Álvarez, C, et al. Hallazgos de autopsias de 50 fallecidos con SARS-CoV-2 en Cuba entre abril y septiembre de 2020. Anales de la ACC. 2021 [acceso 20/01/2022];11(2). Disponible en: https://revistaccuba.sld.cu/index.php/revacc/article/view/99462.
Piñol Jiménez FN, Capo De Paz V, Gra Oramas B, Piera Rocillo OM. COVID-19 y ácidos biliares: nuevas perspectivas a tener en cuenta. Anales de la ACC. 2021 [acceso 20/01/2022];11(2). Disponible en: https://revistaccuba.sld.cu/index.php/revacc/article/view/96863.
Abdulrab S, Al-Maweri S, Halboub E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med Hypotheses. 2020;143:109897. DOI: https://doi.org/10.1016/j.mehy.2020.10989764.